Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 12(33): 21374-21384, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35975082

ABSTRACT

Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs). Nevertheless, they still face great challenges in the design of the best electrode materials for applications. Herein, we have successfully synthesized nano-sized CoSe2 encapsulated by N-doped reduced graphene oxide (denoted as CoSe2@N-rGO) by a direct one-step hydrothermal method, including both orthorhombic and cubic CoSe2 phases. The CoSe2@N-rGO anodes exhibit a high reversible capacity of 599.3 mA h g-1 at 0.05 A g-1 in the initial cycle, and in particular, they also exhibit a cycling stability of 421 mA h g-1 after 100 cycles at 0.2 A g-1. Density functional theory (DFT) calculations show that CoSe2 with N-doped carbon can greatly accelerate electron transfer and enhance the rate performance. In addition, the intrinsic causes of the higher electrochemical performance of orthorhombic CoSe2 than that of cubic CoSe2 are also discussed.

2.
Dalton Trans ; 51(18): 7100-7108, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35451444

ABSTRACT

The high overpotential required for the oxygen evolution reaction (OER)-due to the transfer of four protons and four electrons-has greatly hindered the commercial viability of water electrolysis. People have been committed to the development of alternative precious metal-free OER electrocatalysts, especially electrocatalysts for alkaline media. In this study, we report the application of Sr6(Co0.8Fe0.2)5O15 (SCF-H) perovskite oxide with a hexagonal phase structure in the field of OER electrocatalysis. Synthesized by a simple and universal sol-gel method, the SCF-H perovskite oxide shows prominent OER activity with an overpotential of 318 mV at a current density of 10 mA cm-2 and a Tafel slope of only 54 mV dec-1, which is significantly better than the cubic phase structure SrCo0.8Fe0.2O3-δ (SCF-C), benchmark noble-metal oxide RuO2 and Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF). Compared with cubic SCF-C, the hexagonal SCF-H perovskite oxide has abundant surface oxygen species (O22-/O-), a faster charge transfer rate, and a higher electrochemical surface area. In addition, the DFT calculation results show that the center of the O p-band of SCF-H is closer to the Fermi level than that of SCF-C, which leads to the better OER activity of SCF-H. This work finds that the new hexagonal structure perovskite may become a promising OER electrocatalyst.

3.
Dalton Trans ; 50(37): 13052-13058, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34581350

ABSTRACT

Several FeS-derived intercalated compounds (C2H8N2)xFeS and Ax(C2H8N2)yFeS (A = Li, Na) were successfully synthesized via a novel ammonothermal method. The powder X-ray diffraction (XRD) measurements reveal that the FeS intercalated samples have the same tetragonal crystal structure as the parent FeS. After intercalation, these three as-synthesized samples do not show superconductor behavior, which is confirmed by the magnetization and the electrical resistivity measurements. (C2H8N2)xFeS exhibits paramagnetic semiconductor behavior, while the newly synthesized Ax(C2H8N2)yFeS (A = Li, Na) shows antiferromagnetic semiconductor behavior. The absence of superconductivity in these FeS-derived compounds should be closely related to the iron vacancies in the FeS layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...