Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cartilage ; 14(2): 235-246, 2023 06.
Article in English | MEDLINE | ID: mdl-36799242

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is the most prevalent joint disease characterized by the degeneration of articular cartilage and the remodeling of its underlying bones, resulting in pain and loss of function in the knees and hips. As far as we know, no curative treatments are available except for the joint replacement. The precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of osteoarthritis are still unclear. DESIGN: By analyzing RNA-seq data, we found the molecular changes at the transcriptome level such as alternative splicing, gene expression, and molecular pathways in OA knees cartilage. RESULTS: Expression analysis have identified 457 differential expressed genes including 266 up-regulated genes such as TNFSF15, ST6GALNAC5, TGFBI, ASPM, and TYM, and 191 down-regulated genes such as ADM, JUN, IRE2, PIGA, and MAFF. Gene set enrichment analysis (GSEA) analysis identified down-regulated pathways related to translation, transcription, immunity, PI3K/AKT, and circadian as well as disturbed pathways related to extracellular matrix and collagen. Splicing analysis identified 442 differential alternative splicing events within 284 genes in osteoarthritis, including genes involved in extracellular matrix (ECM) and alternative splicing, and TIA1 was identified as a key regulator of these splicing events. CONCLUSIONS: These findings provide insights into disease etiology, and offer favorable information to support the development of more effective interventions in response to the global clinical challenge of osteoarthritis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Transcriptome/genetics , Alternative Splicing/genetics , Phosphatidylinositol 3-Kinases/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Cartilage, Articular/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism
2.
Polymers (Basel) ; 8(2)2016 Jan 28.
Article in English | MEDLINE | ID: mdl-30979127

ABSTRACT

In this paper, we mainly described the reversible self-assembly of a backbone-thermoresponsive, long-chain, hyperbranched poly(N-isopropyl acrylamide) (LCHBPNIPAM) in aqueous solution. Here, we revealed a reversible self-assembly behavior of LCHBPNIPAM aqueous solution derived from temperature. By controlling the temperature of LCHBPNIPAM aqueous solution, we tune the morphology of the LCHBPNIPAM self-assemblies. When the solution temperature increased from the room temperature to the lower critical solution temperature of PNIPAM segments, LCHBPNIPAM self-assembled from multi-compartment vesicles into solid micelles. The morphology of LCHBPNIPAM self-assemblies changed from solid micelles to multi-compartment vesicles again when the temperature decreased back to the room temperature. The size presented, at first, an increase, and then a decrease, tendency in the heating-cooling process. The above thermally-triggered self-assembly behavior of LCHBPNIPAM aqueous solution was investigated by dynamic/static light scattering, transmission electron microscopy, atomic force microscopy, fluorescence spectroscopy, ¹H nuclear magnetic resonance in D2O, and attenuated total reflectance Fourier transform infrared spectroscopy. These results indicated that LCHBPNIPAM aqueous solution presents a reversible self-assembly process. The controlled release behaviors of doxorubicin from the vesicles and micelles formed by LCHBPNIPAM further proved the feasibility of these self-assemblies as the stimulus-responsive drug delivery system.

SELECTION OF CITATIONS
SEARCH DETAIL
...