Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemosphere ; 358: 142207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697560

ABSTRACT

Fenazaquin, a potent insecticide widely used to control phytophagous mites, has recently emerged as a potential solution for managing Varroa destructor mites in honeybees. However, the comprehensive impact of fenazaquin on honeybee health remains insufficiently understood. Our current study investigated the acute and chronic toxicity of fenazaquin to honeybee larvae, along with its influence on larval hemolymph metabolism and gut microbiota. Results showed that the acute median lethal dose (LD50) of fenazaquin for honeybee larvae was 1.786 µg/larva, and the chronic LD50 was 1.213 µg/larva. Although chronic exposure to low doses of fenazaquin exhibited no significant effect on larval development, increasing doses of fenazaquin resulted in significant increases in larval mortality, developmental time, and deformity rates. At the metabolic level, high doses of fenazaquin inhibited nucleotide, purine, and lipid metabolism pathways in the larval hemolymph, leading to energy metabolism disorders and physiological dysfunction. Furthermore, high doses of fenazaquin reduced gut microbial diversity and abundance, characterized by decreased relative abundance of functional gut bacterium Lactobacillus kunkeei and increased pathogenic bacterium Melissococcus plutonius. The disrupted gut microbiota, combined with the observed gut tissue damage, could potentially impair food digestion and nutrient absorption in the larvae. Our results provide valuable insights into the complex and diverse effects of fenazaquin on honeybee larvae, establishing an important theoretical basis for applying fenazaquin in beekeeping.


Subject(s)
Acaricides , Gastrointestinal Microbiome , Hemolymph , Larva , Metabolome , Animals , Gastrointestinal Microbiome/drug effects , Bees/drug effects , Larva/drug effects , Larva/growth & development , Hemolymph/metabolism , Hemolymph/drug effects , Metabolome/drug effects , Acaricides/toxicity
2.
Sci Data ; 11(1): 498, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750068

ABSTRACT

Tropilaelaps mercedesae, an ectoparasitic mite of honeybees, is currently a severe health risk to Apis mellifera colonies in Asia and a potential threat to the global apiculture industry. However, our understanding of the physiological and developmental regulation of this pest remains significantly insufficient. Using ultra-high resolution mass spectrometry, we provide the first comprehensive proteomic profile of T. mercedesae spanning its entire post-embryonic ontogeny, including protonymphs, deutonymphs, mature adults, and reproductive mites. Consequently, a total of 4,422 T. mercedesae proteins were identified, of which 2,189 proteins were significantly differentially expressed (FDR < 0.05) throughout development and maturation. Our proteomic data provide an important resource for understanding the biology of T. mercedesae, and will contribute to further research and effective control of this devastating honeybee pest.


Subject(s)
Bees , Mites , Proteomics , Animals , Bees/parasitology , Mass Spectrometry , Mites/growth & development
3.
Nat Commun ; 15(1): 725, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272866

ABSTRACT

Ectoparasitic mites of the genera Varroa and Tropilaelaps have evolved to exclusively exploit honey bees as food sources during alternating dispersal and reproductive life history stages. Here we show that the primary food source utilized by Varroa destructor depends on the host life history stage. While feeding on adult bees, dispersing V. destructor feed on the abdominal membranes to access to the fat body as reported previously. However, when V. destructor feed on honey bee pupae during their reproductive stage, they primarily consume hemolymph, indicated by wound analysis, preferential transfer of biostains, and a proteomic comparison between parasite and host tissues. Biostaining and proteomic results were paralleled by corresponding findings in Tropilaelaps mercedesae, a mite that only feeds on brood and has a strongly reduced dispersal stage. Metabolomic profiling of V. destructor corroborates differences between the diet of the dispersing adults and reproductive foundresses. The proteome and metabolome differences between reproductive and dispersing V. destructor suggest that the hemolymph diet coincides with amino acid metabolism and protein synthesis in the foundresses while the metabolism of non-reproductive adults is tuned to lipid metabolism. Thus, we demonstrate within-host dietary specialization of ectoparasitic mites that coincides with life history of hosts and parasites.


Subject(s)
Mites , Varroidae , Bees , Animals , Proteomics , Pupa/parasitology , Diet , Reproduction
4.
iScience ; 26(12): 108546, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38089582

ABSTRACT

Environmental variation selects for the adaptive plasticity of maternal provisioning. Even though developing honeybees find themselves in a protected colony environment, their reproductively specialized queens actively adjust their maternal investment, even among worker-destined eggs. However, the potentially adaptive consequences of this flexible provisioning strategy and their mechanistic basis are unknown. Under natural conditions, we find that the body size of larvae hatching from small eggs in large colonies converges with that of initially larger larvae hatching from large eggs typically produced in small colonies. However, large eggs confer a persistent body size advantage when small and large eggs are cross-fostered in small and large colonies, respectively. We substantiate the increased maternal investment by identifying growth-promoting metabolomes and proteomes in large eggs compared to small eggs, which are primarily enriched in amino acid metabolism and cell maturation. Thus, our study provides a comprehensive adaptive explanation for the worker egg size plasticity of honeybees.

5.
Elife ; 112022 11 08.
Article in English | MEDLINE | ID: mdl-36346221

ABSTRACT

Reproduction involves the investment of resources into offspring. Although variation in reproductive effort often affects the number of offspring, adjustments of propagule size are also found in numerous species, including the Western honey bee, Apis mellifera. However, the proximate causes of these adjustments are insufficiently understood, especially in oviparous species with complex social organization in which adaptive evolution is shaped by kin selection. Here, we show in a series of experiments that queens predictably and reversibly increase egg size in small colonies and decrease egg size in large colonies, while their ovary size changes in the opposite direction. Additional results suggest that these effects cannot be solely explained by egg-laying rate and are due to the queens' perception of colony size. Egg-size plasticity is associated with quantitative changes of 290 ovarian proteins, most of which relate to energy metabolism, protein transport, and cytoskeleton. Based on functional and network analyses, we further study the small GTPase Rho1 as a candidate regulator of egg size. Spatio-temporal expression analysis via RNAscope and qPCR supports an important role of Rho1 in egg-size determination, and subsequent RNAi-mediated gene knockdown confirmed that Rho1 has a major effect on egg size in honey bees. These results elucidate how the social environment of the honey bee colony may be translated into a specific cellular process to adjust maternal investment into eggs. It remains to be studied how widespread this mechanism is and whether it has consequences for population dynamics and epigenetic influences on offspring phenotype in honey bees and other species.


Honey bees are social insects that live in large colonies containing tens of thousands of individuals. The vast majority of bees are sterile females known as worker bees. They perform most of the activities essential for the survival of the colony, including foraging for pollen and nectar and taking care of eggs and larvae. An individual known as the queen bee is the mother of the colony and is normally the only female who reproduces. She has two massive ovaries and can produce up to two thousand eggs per day. Previous studies indicate that the number and size of the eggs vary according to the conditions inside the colony and in the surrounding environment. Larger eggs contain more nutrients so the resulting embryos may have a better chance of survival. However, producing bigger eggs requires the queen to invest more resources, which is costly to the colony as a whole. It remains unclear which mechanisms regulate the size of honey bee eggs. To address this question, Han, Wei, Amiri et al. carried out a series of experiments on the Western honey bee, Apis mellifera. The experiments showed that queen bees in small colonies had smaller ovaries and produced bigger eggs than those in large colonies. The difference in egg size appeared to be due to the queen bee's perception of the size of the colony, rather than its actual size. An approach called proteomics revealed that 290 ovarian proteins were produced at different levels in big-egg producing ovaries compared to small-egg producing ovaries. Further experiments suggested that a protein known as Rho1 regulates the size of the eggs the queen bees produce. These findings provide an explanation for how the social environment of the Western honey bee colony may influence the queen bee's reproductive investment at the molecular level. Further studies to confirm and expand on this work may help to improve honey bee health and also contribute to our general understanding of this life stage in bees and other insects.


Subject(s)
Oviposition , Reproduction , Female , Bees , Animals , Ovary , Eggs
6.
Int J Biol Macromol ; 217: 583-591, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35850267

ABSTRACT

The eastern Apis cerana (Ac) and the western Apis mellifera (Am) are two closely related and most economically valuable honeybee species managed extensively worldwide. However, how worker bees of Ac and Am are adapted to their colony organization remains to be uncovered. Here, we found that the expression level of gene encoding antennae-specific proteins 1 (ASP1, a key regulator in recognizing queen mandibular pheromone) was positively correlated with the colony sizes in both bee species, and the expression level in Am was higher than that in Ac, suggesting that ASP1 may play an important role in maintaining colony homeostasis. Using competitive binding assay, molecular docking, and site-directed mutagenesis, we then confirmed the good binding affinities of both Ac-ASP1 and Am-ASP1 to methyl p-hydroxy benzoate (HOB), and Val115 was the key amino acid. However, the affinity of Am-ASP1 was stronger than that of Ac-ASP1. EAG analysis further demonstrated that antennae of Am worker bees had faster depolarization and repolarization in response to HOB stimulation. Taken together, these findings indicate that the differences in expression levels and binding dynamics allow ASP1 recognizing HOB to potentially serve as a specific regulator of colony organization in Ac and Am.


Subject(s)
Carrier Proteins/metabolism , Hydroxybenzoates/metabolism , Insect Proteins/metabolism , Pheromones , Smell , Animals , Bees/genetics , Molecular Docking Simulation , Pheromones/metabolism
7.
Front Nutr ; 9: 873892, 2022.
Article in English | MEDLINE | ID: mdl-35711556

ABSTRACT

10-Hydroxydec-2-enoic acid (10-HDA), an unsaturated hydroxyl fatty acid from the natural food royal jelly, can protect against cell and tissue damage, yet the underlying mechanisms are still unexplored. We hypothesized that the neutralization of the hydroxyl free radical (•OH), the most reactive oxygen species, is an important factor underlying the cytoprotective effect of 10-HDA. In this study, we found that the •OH scavenging rate by 10-HDA (2%, g/ml) was more than 20%, which was achieved through multiple-step oxidization of the -OH group and C=C bond of 10-HDA. Moreover, 10-HDA significantly enhanced the viability of vascular smooth muscle cells (VSMCs) damaged by •OH (P < 0.01), significantly attenuated •OH-derived malondialdehyde production that represents cellular lipid peroxidation (P < 0.05), and significantly increased the glutathione levels in •OH-stressed VSMCs (P < 0.05), indicating the role of 10-HDA in reducing •OH-induced cytotoxicity. Further proteomic analyses of VSMCs identified 195 proteins with decreased expression by •OH challenge that were upregulated by 10-HDA rescue and were primarily involved in protein synthesis (such as translation, protein transport, ribosome, and RNA binding) and energy metabolism (such as fatty acid degradation and glycolysis/gluconeogenesis). Taken together, these findings indicate that 10-HDA can effectively promote cell survival by antagonizing •OH-induced injury in VSMCs. To the best of our knowledge, our results provide the first concrete evidence that 10-HDA-scavenged •OH could be a potential pharmacological application for maintaining vascular health.

8.
J Agric Food Chem ; 69(36): 10731-10740, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34469689

ABSTRACT

Although the antimicrobial, nutritional, and health-promoting properties of royal jelly (RJ) have been widely confirmed, the effects of storage temperature and time on RJ quality remain to be further explored. Herein, the antimicrobial and proteomic dynamics of RJ stored under different conditions were comprehensively investigated to identify consistent and sensitive markers of RJ degradation. We confirmed the negative correlation between antimicrobial properties and increased the storage temperature and duration in RJ. Using surface plasmon resonance, we showed the protein degradation-induced conformation changes in RJ, which reflected the overall variation in RJ proteins caused by the storage conditions. Further proteomic and western blotting analyses demonstrated the sensitivity and reliability of major RJ protein 4 (MRJP4) as a measure of temperature- and time-dependent RJ changes. Based on these results, we developed a colloidal gold immunoassay strip for MRJP4 detection, providing a reliable, simple, and rapid method for the evaluation of RJ freshness.


Subject(s)
Anti-Infective Agents , Proteome , Anti-Infective Agents/pharmacology , Fatty Acids , Proteomics , Reproducibility of Results , Temperature
9.
Elife ; 102021 03 24.
Article in English | MEDLINE | ID: mdl-33760729

ABSTRACT

Behavioral specialization is key to the success of social insects and leads to division of labor among colony members. Response thresholds to task-specific stimuli are thought to proximally regulate behavioral specialization, but their neurobiological regulation is complex and not well understood. Here, we show that response thresholds to task-relevant stimuli correspond to the specialization of three behavioral phenotypes of honeybee workers in the well-studied and important Apis mellifera and Apis cerana. Quantitative neuropeptidome comparisons suggest two tachykinin-related peptides (TRP2 and TRP3) as candidates for the modification of these response thresholds. Based on our characterization of their receptor binding and downstream signaling, we confirm a functional role of tachykinin signaling in regulating specific responsiveness of honeybee workers: TRP2 injection and RNAi-mediated downregulation cause consistent, opposite effects on responsiveness to task-specific stimuli of each behaviorally specialized phenotype but not to stimuli that are unrelated to their tasks. Thus, our study demonstrates that TRP signaling regulates the degree of task-specific responsiveness of specialized honeybee workers and may control the context specificity of behavior in animals more generally.


Subject(s)
Bees/metabolism , Behavior, Animal , Insect Proteins/metabolism , Tachykinins/metabolism , Animals , Down-Regulation , HEK293 Cells , Honey , Humans , Pollen , Signal Transduction , Social Behavior
10.
Mol Cell Proteomics ; 19(10): 1632-1648, 2020 10.
Article in English | MEDLINE | ID: mdl-32669299

ABSTRACT

The neuronal basis of complex social behavior is still poorly understood. In honeybees, reproductive investment decisions are made at the colony-level. Queens develop from female-destined larvae that receive alloparental care from nurse bees in the form of ad-libitum royal jelly (RJ) secretions. Typically, the number of raised new queens is limited but genetic breeding of "royal jelly bees" (RJBs) for enhanced RJ production over decades has led to a dramatic increase of reproductive investment in queens. Here, we compare RJBs to unselected Italian bees (ITBs) to investigate how their cognitive processing of larval signals in the mushroom bodies (MBs) and antennal lobes (ALs) may contribute to their behavioral differences. A cross-fostering experiment confirms that the RJB syndrome is mainly due to a shift in nurse bee alloparental care behavior. Using olfactory conditioning of the proboscis extension reflex, we show that the RJB nurses spontaneously respond more often to larval odors compared with ITB nurses but their subsequent learning occurs at similar rates. These phenotypic findings are corroborated by our demonstration that the proteome of the brain, particularly of the ALs differs between RJBs and ITBs. Notably, in the ALs of RJB newly emerged bees and nurses compared with ITBs, processes of energy and nutrient metabolism, signal transduction are up-regulated, priming the ALs for receiving and processing the brood signals from the antennae. Moreover, highly abundant major royal jelly proteins and hexamerins in RJBs compared with ITBs during early life when the nervous system still develops suggest crucial new neurobiological roles for these well-characterized proteins. Altogether, our findings reveal that RJBs have evolved a strong olfactory response to larvae, enabled by numerous neurophysiological adaptations that increase the nurse bees' alloparental care behavior.


Subject(s)
Bees/physiology , Hierarchy, Social , Perception , Proteomics , Animals , Arthropod Antennae/anatomy & histology , Bees/anatomy & histology , Insect Proteins/metabolism , Larva/metabolism , Mushroom Bodies/metabolism , Pheromones/metabolism , Reproduction/physiology
11.
Expert Opin Ther Targets ; 24(3): 267-279, 2020 03.
Article in English | MEDLINE | ID: mdl-32077781

ABSTRACT

Objectives: 10-hydroxydec-2-enoic acid (10-HDA), a unique component of royal jelly existing only in nature, has the potential to promote human health. Knowledge of 10-HDA in regulating immuno-activity, however, is lacking. The aim of our work is to gain a novel understanding of 10-HDA in promoting immunity.Methods: Immuno-suppressed mice were generated by cyclophosphamide injection, After 10-HDA supplementation to the mice to rescue their immunity, the proteomes of the thymus and spleen were analyzed.Results: The weight of the body, thymus, and spleen in cyclophosphamide-induced mice recovered by 10-HDA indicate its potential role in immuno-organ protection. In the thymus, the enhanced activity of pathways associated with DNA/RNA/protein activities may be critical for T-lymphocyte proliferation/differentiation, and cytotoxicity. In the spleen, the induced pathways involved in DNA/RNA/protein activities, and cell proliferative stimulation suggest their vital role in B-lymphocyte affinity maturation, antigen presentation, and macrophage activity. The up-regulated proteins highly connected in networks modulated by 10-HDA indicate that the mice may evolve tactics to respond to immuno-organ impairment by activating critical physiological processes.Conclusion: Our data constitute a proof-of-concept that 10-HDA is a potential agent to improve immunity in the thymus and spleen and offer a new venue for applying natural products to the therapy for hypoimmunity.


Subject(s)
Fatty Acids, Monounsaturated/pharmacology , Proteome/immunology , Spleen/drug effects , Thymus Gland/drug effects , Animals , Cell Proliferation/drug effects , Cyclophosphamide/pharmacology , Fatty Acids/chemistry , Fatty Acids, Monounsaturated/isolation & purification , Female , Immunosuppressive Agents/immunology , Male , Mice , Mice, Inbred BALB C , Spleen/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology
12.
Mol Cell Proteomics ; 18(4): 606-621, 2019 04.
Article in English | MEDLINE | ID: mdl-30617159

ABSTRACT

Royal jelly (RJ) is a secretion of the hypopharyngeal glands (HGs) of honeybee workers. High royal jelly producing bees (RJBs), a stock of honeybees selected from Italian bees (ITBs), have developed a stronger ability to produce RJ than ITBs. However, the mechanism underpinning the high RJ-producing performance in RJBs is still poorly understood. We have comprehensively characterized and compared the proteome across the life span of worker bees between the ITBs and RJBs. Our data uncover distinct molecular landscapes that regulate the gland ontogeny and activity corresponding with age-specific tasks. Nurse bees (NBs) have a well-developed acini morphology and cytoskeleton of secretory cells in HGs to prime the gland activities of RJ secretion. In RJB NBs, pathways involved in protein synthesis and energy metabolism are functionally induced to cement the enhanced RJ secretion compared with ITBs. In behavior-manipulated RJB NBs, the strongly expressed proteins implicated in protein synthesis and energy metabolism further demonstrate their critical roles in the regulation of RJ secretion. Our findings provide a novel understanding of the mechanism consolidating the high RJ-output in RJBs.


Subject(s)
Bees/metabolism , Energy Metabolism , Fatty Acids/metabolism , Hierarchy, Social , Hypopharynx/metabolism , Insect Proteins/metabolism , Proteome/metabolism , Aging/metabolism , Animals , Behavior, Animal , Cytoskeleton/metabolism , Protein Biosynthesis , Proteomics , Reproducibility of Results
13.
Zhonghua Nan Ke Xue ; 20(4): 325-8, 2014 Apr.
Article in Chinese | MEDLINE | ID: mdl-24873158

ABSTRACT

OBJECTIVE: To observe the clinical effects of two different circumcision procedures with the Shang Ring and compare their advantages and disadvantages. METHODS: A total of 527 adult males with phimosis or redundant prepuce underwent Shang Ring circumcision by conventional outward replacement (n = 254) and inward placement (n = 273), respectively. We observed the in-ring nocturnal pain, complications, ring-removal pain, degree of edema, recovery time, and patients' satisfaction after surgery, and compared them between the two groups. RESULTS: Compared with the conventional outward placement (5.9%) of the Shang Ring, the inward placement method showed the advantages of mild in-ring nocturnal pain, a low complication rate, significantly reduced ring-removal pain, and mild edema, but exhibited longer healing time. CONCLUSION: In Shang Ring circumcision for phimosis and redundant prepuce in adult males, each of the outward and inward placement methods has advantages and disadvantages of its own, but the latter is more advantageous and feasible.


Subject(s)
Circumcision, Male/instrumentation , Penis/surgery , Phimosis/surgery , Adult , Circumcision, Male/adverse effects , Edema/etiology , Foreskin/abnormalities , Foreskin/surgery , Humans , Male , Pain, Postoperative , Patient Satisfaction , Penile Diseases/etiology , Penis/abnormalities , Prostheses and Implants , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...