Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2311969, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529775

ABSTRACT

Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.

2.
Inorg Chem ; 63(4): 2275-2281, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38226409

ABSTRACT

In recent years, there has been a surge in research enthusiasm on searching for solid-state nonlinear optical (NLO) switching materials in halide perovskites owing to their exceptional structural flexibility, compositional diversity, and broad property tenability. However, the majority of reported halide perovskite NLO switching materials contain toxic elements (e.g., Pb), which raise significant environmental concerns. Herein, we present a novel lead-free multilayered halide perovskite NLO switching material, (BA)2(EA)2Sn3Br10 (1, where BA is butylammonium and EA is ethylammonium). Driven by the stereochemically active lone-pair electrons of the Sn2+ cation and the cage-confined effect of EA rotators, 1 undergoes a phase transition with symmetry breaking from P4/mnc to Cmc21, which gives rise to a highly efficient modulation of the quadratic NLO property (0.7 times that of KH2PO4) at a high temperature of 353 K. Furthermore, crystallographic investigation combined with theoretical calculations reveals that the efficient modulation of NLO properties in 1 stems from the synergistic effects between stereochemically active lone pair-induced octahedral distortions and order/disorder transformation of organic cations. This study opens up an instructive avenue for designing and advancing environmentally friendly solid-state NLO switches in halide perovskites.

SELECTION OF CITATIONS
SEARCH DETAIL
...