Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 719
Filter
1.
BMJ Open ; 14(5): e077618, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749685

ABSTRACT

OBJECTIVE: To estimate Chinese rural residents' willingness degree of initially contacting primary healthcare (PHC) under uncertainty in healthcare and to explore its influencing factors. SETTING: This study collected primary data from rural residents in Dangyang, Hubei Province in China. PARTICIPANTS: The study investigated 782 residents and 701 finished the survey. The response rate was 89.64%. A further 27 residents failed the internal consistency test, so the effective sample size was 674. DESIGN: In this cross-sectional study, residents' willingness was reflected by the threshold of disease severity for PHC (TDSP), the individual maximal disease scope for considering PHC based on residents' decision-making framework. TDSP was measured through scenario tests. Univariate analysis and unordered multiple logistic regression were used to explore the influencing factors of three-level TDSP: low, general, and high. RESULTS: Only 28.2% of respondents had high TDSP and high willingness towards PHC. Compared with general TDSP, respondents who were younger than 40 (OR 7.344, 95% CI 2.463 to 21.894), rich (OR 1.913, 95% CI 1.083 to 3.379), highly risk-averse (OR 1.958, 95% CI 1.016 to 3.774), had substitute medical decision-maker (OR value of parent/child was 2.738, 95% CI 1.386 to 5.411) and had no visits to PHC in the last 6 months (OR 2.098, 95% CI 1.316 to 3.346) tended to have low TDSP and low willingness towards PHC. Compared with general TDSP, no factors were found to significantly influence respondents' high TDSP. CONCLUSIONS: TDSP can be a good indicator of residents' willingness. TDSP results demonstrate rural residents' generally low willingness towards first-contact with PHC that some residents refuse to consider PHC even for mild diseases. This study provides practical significance for elaborating the underutilisation of PHC from resident decision-making and offers advice to policymakers and researchers for future modifications.


Subject(s)
Primary Health Care , Rural Population , Humans , Cross-Sectional Studies , China , Male , Female , Adult , Middle Aged , Uncertainty , Patient Acceptance of Health Care/psychology , Patient Acceptance of Health Care/statistics & numerical data , Logistic Models , Surveys and Questionnaires , Decision Making , Young Adult , Aged
2.
Int Immunopharmacol ; 134: 112185, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701540

ABSTRACT

Chronic ethanol consumption is a prevalent condition in contemporary society and exacerbates anxiety symptoms in healthy individuals. The activation of microglia, leading to neuroinflammatory responses, may serve as a significant precipitating factor; however, the precise molecular mechanisms underlying this phenomenon remain elusive. In this study, we initially confirmed that chronic ethanol exposure (CEE) induces anxiety-like behaviors in mice through open field test and elevated plus maze test. The cGAS/STING signaling pathway has been confirmed to exhibits a significant association with inflammatory signaling responses in both peripheral and central systems. Western blot analysis confirmed alterations in the cGAS/STING signaling pathway during CEE, including the upregulation of p-TBK1 and p-IRF3 proteins. Moreover, we observed microglial activation in the prefrontal cortex (PFC) of CEE mice, characterized by significant alterations in branching morphology and an increase in cell body size. Additionally, we observed that administration of CEE resulted in mitochondrial dysfunction within the PFC of mice, accompanied by a significant elevation in cytosolic mitochondrial DNA (mtDNA) levels. Furthermore, our findings revealed that the inhibition of STING by H-151 effectively alleviated anxiety-like behavior and suppressed microglial activation induced by CEE. Our study unveiled a significant association between anxiety-like behavior, microglial activation, inflammation, and mitochondria dysfunction during CEE.

3.
Sci Total Environ ; 931: 172971, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705292

ABSTRACT

Biomass burning (e.g., wildfire) frequently occurs globally, inevitably produces abundant biomass-burning smoke-derived dissolved organic matters (BBS-DOMs) which eventually deposits on the surface environment. The adsorption and fractionation of BBS-DOMs on clays inevitably alter their biogeochemical process and environmental behaviors in the surface environment. It is therefore important to clarify the adsorption and fractionation of BBS-DOM on clay surfaces. This study found that the fractionation of BBS-DOMs on clays (montmorillonite and kaolinite) were controlled by their functional groups, aromaticity, molecular size and organic components. The spectral indexes (SUVA254 and S275-295) of BBS-DOMs in solution after clays adsorption suggested that with the increasing DOC concentration, the primary interaction between BBS-DOMs and clays changed from hydrogen bond to hydrophobic/pore filling effects, and the adsorption ratio of the large molecules increased, which were very different from natural fulvic acid. Furthermore, various BBS-DOMs and fulvic acid had different component fractionation behaviors during clay adsorption, because they had different abundances of protein-like matters (hydrogen bond donors), pyridine-N/pyrimidine-N (positive charge doners of electrostatic interaction), and fulvic-like matters (hydrophobic interaction and pore filling effect). Additionally, the increasing pH weakened the adsorption of bulk BBS-DOMs and enhanced the adsorption ratio of aromatic matters and smaller BBS-DOM molecules. Meanwhile, at a higher pH, the adsorption ratio of protein-like matters increased, while the adsorption ratio of humic- and fulvic-like matters decreased. The result was ascribed to the enhanced hydrogen bond between protein-like matters and clays as well as the enhanced electrostatic repulsion between humic-/fulvic-like matters and clays. This study is helpful for deeply understanding the multimedia-crossing environmental behavior of BBS-DOMs in the surface environment.

4.
Precis Clin Med ; 7(1): pbae005, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38558949

ABSTRACT

Background: Myopia is a leading cause of visual impairment in Asia and worldwide. However, accurately predicting the progression of myopia and the high risk of myopia remains a challenge. This study aims to develop a predictive model for the development of myopia. Methods: We first retrospectively gathered 612 530 medical records from five independent cohorts, encompassing 227 543 patients ranging from infants to young adults. Subsequently, we developed a multivariate linear regression algorithm model to predict the progression of myopia and the risk of high myopia. Result: The model to predict the progression of myopia achieved an R2 value of 0.964 vs a mean absolute error (MAE) of 0.119D [95% confidence interval (CI): 0.119, 1.146] in the internal validation set. It demonstrated strong generalizability, maintaining consistent performance across external validation sets: R2 = 0.950 vs MAE = 0.119D (95% CI: 0.119, 1.136) in validation study 1, R2 = 0.950 vs MAE = 0.121D (95% CI: 0.121, 1.144) in validation study 2, and R2 = 0.806 vs MAE = -0.066D (95% CI: -0.066, 0.569) in the Shanghai Children Myopia Study. In the Beijing Children Eye Study, the model achieved an R2 of 0.749 vs a MAE of 0.178D (95% CI: 0.178, 1.557). The model to predict the risk of high myopia achieved an area under the curve (AUC) of 0.99 in the internal validation set and consistently high area under the curve values of 0.99, 0.99, 0.96 and 0.99 in the respective external validation sets. Conclusion: Our study demonstrates accurate prediction of myopia progression and risk of high myopia providing valuable insights for tailoring strategies to personalize and optimize the clinical management of myopia in children.

5.
Front Neurorobot ; 18: 1341750, 2024.
Article in English | MEDLINE | ID: mdl-38576893

ABSTRACT

Understanding adaptive human driving behavior, in particular how drivers manage uncertainty, is of key importance for developing simulated human driver models that can be used in the evaluation and development of autonomous vehicles. However, existing traffic psychology models of adaptive driving behavior either lack computational rigor or only address specific scenarios and/or behavioral phenomena. While models developed in the fields of machine learning and robotics can effectively learn adaptive driving behavior from data, due to their black box nature, they offer little or no explanation of the mechanisms underlying the adaptive behavior. Thus, generalizable, interpretable, computational models of adaptive human driving behavior are still rare. This paper proposes such a model based on active inference, a behavioral modeling framework originating in computational neuroscience. The model offers a principled solution to how humans trade progress against caution through policy selection based on the single mandate to minimize expected free energy. This casts goal-seeking and information-seeking (uncertainty-resolving) behavior under a single objective function, allowing the model to seamlessly resolve uncertainty as a means to obtain its goals. We apply the model in two apparently disparate driving scenarios that require managing uncertainty, (1) driving past an occluding object and (2) visual time-sharing between driving and a secondary task, and show how human-like adaptive driving behavior emerges from the single principle of expected free energy minimization.

6.
Front Cardiovasc Med ; 11: 1356286, 2024.
Article in English | MEDLINE | ID: mdl-38572308

ABSTRACT

Background: Deep vein thrombosis (DVT) is associated with aberrant gene expression that is a common peripheral vascular disease. Here, we aimed to elucidate that the epigenetic modification of forkhead box protein 3 (FOXP3) at the post-transcriptional level, which might be the key trigger leading to the down-regulation of FOXP3 expression in DVT. Methods: In order to explore the relationship between microRNAs (miRNAs) and FOXP3, mRNA and microRNA microarray analysis were performed. Dual luciferase reporter assay was used to verify the upstream miRNAs of FOXP3. Quantitative real-time polymerase chain reaction, flow cytometry and Western blot were used to detect the relative expression of miR-6132 and FOXP3. Additionally, DVT models were established to investigate the role of miR-6132 by Murine Doppler Ultrasound and Hematoxylin-Eosin staining. Results: Microarray and flow cytometry results showed that the FOXP3 expression was decreased while miR-6132 level was increased substantially in DVT, and there was significant negative correlation between miR-6132 and FOXP3. Moreover, we discovered that overexpressed miR-6132 reduced FOXP3 expression and aggravated DVT formation, while miR-6132 knockdown increased FOXP3 expression and alleviated DVT formation. Dual luciferase reporter assay validated the direct binding of miR-6132 to FOXP3. Conclusion: Collectively, our data elucidate a new avenue through which up-regulated miR-6132 contributes to the formation and progression of DVT by inhibiting FOXP3 expression.

7.
Brain Imaging Behav ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592332

ABSTRACT

Epilepsy is a disorder of brain networks, that is usually combined with cognitive and emotional impairment. However, most of the current research on closed-loop pathways in epilepsy is limited to the neuronal level or has focused only on known closed-loop pathways, and studies on abnormalities in closed-loop pathways in epilepsy at the whole-brain network level are lacking. A total of 26 patients with magnetic resonance imaging-negative pharmacoresistant epilepsy (MRIneg-PRE) and 26 healthy controls (HCs) were included in this study. Causal brain networks and temporal-lag brain networks were constructed from resting-state functional MRI data, and the Johnson algorithm was used to identify stable closed-loop pathways. Abnormal closed-loop pathways in the MRIneg-PRE cohort compared with the HC group were identified, and the associations of these pathways with indicators of cognitive and emotional impairments were examined via Pearson correlation analysis. The results revealed that the abnormal stable closed-loop pathways were distributed across the frontal, parietal, and occipital lobes and included altered functional connectivity values both within and between cerebral hemispheres. Four abnormal closed-loop pathways in the occipital lobe were associated with emotional and cognitive impairments. These abnormal pathways may serve as biomarkers for the diagnosis and guidance of individualized treatments for MRIneg-PRE patients.

8.
Small Methods ; : e2301645, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607956

ABSTRACT

Bimetallic phosphides are considered as promising electrocatalysts for zinc-air batteries toward oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). To address the semi-conductor inherent low electronic conductivity and catalytic activity, a polymetal-chelated strategy is employed to in situ fabricate bimetallic nanophosphides within carbon matrix anchoring by chemical bonding. The employment of biomolecule polydopamine (PDA) efficiently anchors various transition metal ions due to its strong chelating capability via inherent functional groups. Furthermore, the chelation of multi-metal ion is proved to promote the formation of graphitic nitrogen. The bimetallic FexCoyP phosphides nanoparticles are intimately encapsulated in carbon matrix through in situ carbonization and phosphatization processes. When utilized in Zinc-air batteries, Fe0.20Co0.80P anchored within N, P co-doped sub-microsphere (Fe0.20Co0.80P /PNC) exhibit a maximum power density of 167 mW cm-2 and cycle life up to 270 cycles, with a round-trip voltage of 0.955 V. The mechanisms for catalytic activity passivation are ascribed to the etching of nitrogen and oxidation of phosphorus in carbon matrix, as well as the oxidation of the surface phosphide on the sub-microspheres. This study presents a promising candidate for advancing the further development of energy conversation catalysis.

10.
Diabetes Metab Syndr Obes ; 17: 1621-1634, 2024.
Article in English | MEDLINE | ID: mdl-38616991

ABSTRACT

Objective: To investigate the impact of sarcopenia on the 10-year risk of atherosclerotic cardiovascular disease (ASCVD) among individuals with type 2 diabetes mellitus (T2DM). Methods: This study included the clinical, laboratory, and body composition data of 1491 patients with T2DM who were admitted to the Department of Endocrinology and Metabolism at Tianjin Union Medical Center from July 2018 to July 2023. The China-PAR model was utilized to evaluate cardiovascular disease risk. Associations between ASCVD risk and various clinical parameters were analyzed, and the relationship between body composition parameters and ASCVD risk was assessed using logistic regression. Results: The analysis revealed that T2DM patients with sarcopenia had a higher 10-year ASCVD risk compared to those without sarcopenia, with reduced muscle mass independently predicting an increased risk of cardiovascular disease. This association was significant among female T2DM patients, while male T2DM patients with sarcopenia showed a marginally higher median ASCVD risk compared to their non-sarcopenic counterparts. ASCVD risk inversely correlated with body muscle parameters and positively correlated with fat content parameters. Specifically, height- and weight-adjusted fat mass (FM, FM%, FMI) were identified as risk factors for ASCVD. Conversely, muscle parameters adjusted for weight and fat (ASM%, SMM%, FFM%, ASM/FM, SMM/FM, FMM/FM) were protective against ASCVD risk. These findings highlight the critical role of sarcopenia in influencing cardiovascular disease risk among Chinese patients with T2DM, as predicted by the China-PAR model. Conclusion: This study highlights the importance of sarcopenia in T2DM patients, not only as an indicator of ASCVD risk, but possibly as an independent risk factor in this demographics.

11.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38687279

ABSTRACT

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Subject(s)
Acrylic Resins , Atherosclerosis , Chondroitin Sulfates , Lipoproteins, LDL , Rosiglitazone , Animals , Mice , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/isolation & purification , Chondroitin Sulfates/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Acrylic Resins/chemistry , Rosiglitazone/pharmacology , Rosiglitazone/chemistry , Adsorption , RAW 264.7 Cells , Microspheres , Cyclodextrins/chemistry
12.
J Mol Model ; 30(5): 137, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634935

ABSTRACT

CONTEXT: The electronic properties and optical properties of Cr-doped monolayer WS2 under uniaxial compressive deformation have been investigated based on density functional theory. In terms of electronic structure properties, both intrinsic and doped system bandgaps decrease with the increase of compression deformation, and the values of the bandgap under the same compression deformation after Cr doping are reduced compared with the corresponding intrinsic states. When the compressive deformation reaches 10%, both the intrinsic and doped system band gaps are close to zero. New electronic states and impurity energy levels appear in the WS2 system when doped with Cr atoms. For the optical properties, the calculation and analysis of the dielectric function under each deformation regime of monolayer WS2 show that the compression deformation affects the dielectric function, and when the compression deformation is 10%, the un-doped and Cr-doped regimes show a decrease in ε1(ω) compared to the compression deformation of 8%. For each deformation system, the peak reflections occur in the ultraviolet region. Near the position where the second peak of the absorption spectrum appears, it can be seen that the ability of each system to absorb light gradually decreases with the increase of the amount of deformation and appears to be red-shifted to varying degrees. METHODS: This study follows the initial principles of the density functional theory framework and is based on the CASTEP module of Materials-Studio software GGA and PBE generalizations are used to perform computations such as geometry optimization of the model. We have calculated the energy band structure of monolayer WS2 with intrinsic and compressive deformations of 2% and 4% using PBE and HSE06, respectively. The band gap values calculated using PBE are 1.802 eV, 1.663 eV, and 1.353 eV, respectively, and the band gap values calculated with HSE06 are 2.267 eV, 2.034 eV, 1.751 eV. The results show that the bandgap values calculated by HSE06 are significantly higher than those calculated by PBE, but the bandgap variations calculated by the two methods have the same trend, and the shape characteristics of the energy band structure are also the same. However, it is worth noting that the computation time required for the HSE06 calculation is much longer than that of the PBE, which is far beyond the capability of our computer hardware, and the purpose of this paper is to investigate the change rule of the effect of deformation on the bandgap value, so to save the computational resources, the next calculations are all calculated using the PBE. The Monkhorst-Pack special K-point sampling method is used in the calculations. The cutoff energy for the plane wave expansion is 400 eV, and the K-point grid is assumed to be 5 × 5 × 1. Following geometric optimization, the iterative precision converges to a value of less than 0.03 eV/Å for all atomic forces and at least 1 × 10-5 eV/atom for the total energy of each atom. The vacuum layer's thickness was selected at 20 Å to mitigate the impact of the interlayer contact force.

13.
J Mol Model ; 30(5): 143, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647715

ABSTRACT

CONTENT: In this thesis, the role of N atom doping and biaxial strain in modulating the electronic structure and optical properties of antimonene has been deeply investigated using a first-principles approach based on density-functional theory. The results show that N doping significantly reduces the band gap of antimonene and introduces new electronic states, thus affecting its electronic structure. In terms of optical properties, N doping reduces the static permittivity of antimonene and alters its absorption, reflection, and energy loss properties. In addition, biaxial strain further enhanced the modulation effect of these properties. This study not only provides theoretical support for the application of antimonene in the field of high-performance two-dimensional electronic and optoelectronic devices, but also reveals strain and doping as an effective means to modulate the physical properties of two-dimensional materials. METHODS: For the calculations, we used the DFT-based CASTEP software package for the simulation of the electronic structure. In order to more accurately characterize the weak interactions between two-dimensional materials, we specifically introduced the Van der Waals dispersion correction. We have chosen the Perdew-Burke-Ernzerhof (PBE) exchange-correlation generalization under the generalized gradient approximation (GGA) and combined it with the Van der Waals correction term in order to fully consider the electronic structure of antimonene. For the calculation parameter settings, we set the truncation energy to 400 eV to ensure the accuracy of the calculation. Meanwhile, we adopt a 6 × 6 × 1 k-point grid for Brillouin zone sampling to obtain more accurate energy band structure and density of states information. For the convergence settings, the convergence criteria for both the system energy and the interaction force between atoms were set to 1 × 10-5 eV and 0.01 eV/Å, respectively. We selected a 3 × 3 × 1 supercell model with 18 Sb atoms. A vacuum thickness of 18 Å was established in the Z direction, which is sufficient to avoid interactions between the two atomic layers above and below the periodic structure.

14.
J Am Chem Soc ; 146(18): 12587-12594, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38685488

ABSTRACT

Triphenylphosphine (PPh3) is a ubiquitous ligand in organometallic chemistry that has been shown to give enhanced 31P NMR signals at high magnetic field via a scalar-dominated Overhauser effect dynamic nuclear polarization (OE DNP). However, PPh3 can only be polarized via DNP in the free form, while the coordinated form is DNP-inactive. Here, we demonstrate the possibility of enhancing the 31P NMR signals of coordinated PPh3 in metal complexes in solution at room temperature by combining Overhauser effect DNP and chemical exchange between the free and coordinated PPh3 forms. With this method, we successfully obtain 31P DNP enhancements of up to 2 orders of magnitude for the PPh3 ligands in Rh(I), Ru(II), Pd(II), and Pt(II) complexes, and we show that the DNP enhancements can be used to determine the activation energy of the ligand exchange reaction.

15.
NPJ Breast Cancer ; 10(1): 34, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671001

ABSTRACT

In monarchE, adjuvant abemaciclib significantly improved invasive disease-free survival (IDFS) and distant relapse-free survival (DRFS), with sustained benefit beyond the 2-year treatment period. Abemaciclib dose reductions were allowed to proactively manage adverse events. Exploratory analyses to investigate the impact of dose reductions on efficacy were conducted. Across the three patient subgroups as defined by relative dose intensity (≤66%, 66-93%, ≥93%), the estimated 4-year IDFS rates were generally consistent (87.1%, 86.4%, and 83.7%, respectively). In the time-dependent Cox proportional hazard model, the effect of abemaciclib was consistent at the full dose compared to being reduced to a lower dose (IDFS hazard ratio: 0.905; 95% confidence interval: 0.727, 1.125; DRFS hazard ratio: 0.942; 95% confidence interval: 0.742, 1.195). These analyses showed that the efficacy of adjuvant abemaciclib was not compromised by protocol mandated dose reductions for patients with node positive, hormone receptor positive, human epidermal growth factor 2-negative, high-risk early breast cancer.

16.
Emerg Microbes Infect ; 13(1): 2348525, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38661428

ABSTRACT

To assess the clinical applicability of a semi-quantitative luciferase immunosorbent assay (LISA) for detecting antibodies against Treponema pallidum antigens TP0171 (TP15), TP0435 (TP17), and TP0574 (TP47) in diagnosing and monitoring syphilis. LISA for detection of anti-TP15, TP17, and TP47 antibodies were developed and evaluated for syphilis diagnosis using 261 serum samples (161 syphilis, 100 non-syphilis). Ninety serial serum samples from 6 syphilis rabbit models (3 treated, 3 untreated) and 110 paired serum samples from 55 syphilis patients were used to assess treatment effects by utilizing TRUST as a reference. Compared to TPPA, LISA-TP15, LISA-TP17, and LISA-TP47 showed a sensitivity of 91.9%, 96.9%, and 98.8%, specificity of 99%, 99%, and 98%, and AUC of 0.971, 0.992, and 0.995, respectively, in diagnosing syphilis. Strong correlations (rs = 0.89-0.93) with TPPA were observed. In serial serum samples from rabbit models, significant differences in the relative light unit (RLU) were observed between the treatment and control group for LISA-TP17 (days 31-51) and LISA-TP47 (day 41). In paired serum samples from syphilis patients, TRUST titres and the RLU of LISA-TP15, LISA-TP17, and LISA-TP47 decreased post-treatment (P < .001). When TRUST titres decreased by 0, 2, 4, or ≥8-folds, the RLU decreased by 17.53%, 31.34%, 48.62%, and 72.79% for LISA-TP15; 8.84%, 17.00%, 28.37%, and 50.57% for LISA-TP17; 22.25%, 29.79%, 51.75%, and 70.28% for LISA-TP47, respectively. Semi-quantitative LISA performs well for syphilis diagnosis while LISA-TP17 is more effective for monitoring syphilis treatment in rabbit models and clinical patients.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Sensitivity and Specificity , Syphilis , Treponema pallidum , Syphilis/diagnosis , Syphilis/microbiology , Syphilis/blood , Treponema pallidum/immunology , Animals , Humans , Rabbits , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Male , Female , Adult , Luciferases/genetics , Syphilis Serodiagnosis/methods , Middle Aged , Disease Models, Animal , Young Adult
17.
J Cancer Res Clin Oncol ; 150(3): 131, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491196

ABSTRACT

BACKGROUND: As the most abundant modification in eukaryotic messenger RNAs (mRNAs), N6-methyladenosine (m6A) plays vital roles in many biological processes. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen for m6A targets in esophageal cancer cells and patients. The role of m6A RNA methylase in esophageal cancer was also analyzed using bioinformatics. In vitro and in vivo experiments were used to analyze gene expression and function. CCK-8, colony formation, cell apoptosis and immunofluorescence staining assays were performed to evaluate the proliferation, migration and invasion of esophageal cancer cells, respectively. Western blot analysis, RNA stability, RIP and luciferase reporter assays were performed to elucidate the underlying mechanism involved. RESULTS: We found that the m6A demethylase FTO was significantly upregulated in esophageal cancer cell lines and patient tissues. In vivo and in vitro assays demonstrated that FTO was involved in the proliferation and apoptosis of esophageal cancer cells. Moreover, we found that the m6A methyltransferase METTL14 negatively regulates FTO function in esophageal cancer progression. FTO alone is not related to the prognosis of esophageal cancer, and its function is antagonized by METTL14. By using transcriptome-wide m6A-seq and RNA-seq assays, we revealed that AKT3 is a downstream target of FTO and acts in concert to regulate the tumorigenesis and metastasis of esophageal cancer. Taken together, these findings provide insight into m6A-mediated tumorigenesis in esophageal cancer and could lead to the design of new therapeutic strategies.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Esophageal Neoplasms , Methyltransferases , Humans , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Carcinogenesis , Cell Transformation, Neoplastic , Demethylation , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Methyltransferases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
18.
Chronic Dis Transl Med ; 10(1): 51-61, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450305

ABSTRACT

Background: Magnetic resonance (MR)-guided ultra-hypofractionated radiotherapy with whole-pelvic irradiation (UHF-WPRT) is a novel approach to radiotherapy for patients with high-risk (HR) and very high-risk (VHR) prostate cancer (PCa). However, the inherent complexity of adaptive UHF-WPRT might inevitably result in longer on-couch time. We aimed to estimate the delivered dose, study the feasibility and safety of adaptive UHF-WPRT on a 1.5-Tesla MR-Linac. Methods: Ten patients with clinical stage T3a-4N0-1M0-1c PCa, who consecutively received UHF-WPRT, were enrolled prospectively. The contours of the target and organ-at-risks on the position verification-MR (PV-MR), beam-on 3D-MR(Bn-MR), and post-MR (after radiotherapy delivery) were derived from the pre-MR data by deformable image registration. The physician then manually adjusted them, and dose recalculation was performed accordingly. GraphPad Prism 9 (GraphPad Prism Software Inc.) was utilized for conducting statistical analyses. Results: In total, we collected 188 MR scans (50 pre-MR, 50 PV-MR, 44 Bn-MR, and 44 post-MR scans). With median 59 min, the mean prostate clinical target volume (CTV)-V100% was 98.59% ± 2.74%, and the mean pelvic CTVp-V100% relative percentages of all scans was 99.60% ± 1.18%. The median V29 Gy change in the rectal wall was -2% (-18% to 20%). With a median follow-up of 9 months, no patient had acute Common Terminology Criteria for Adverse Events (CTCAE) grade 2 or more severe genitourinary (GU) or gastrointestinal (GI) toxicities (0%). Conclusion: UHF-RT to the prostate and the whole pelvis with concomitant boost to positive nodes using an Adapt-To-Shape (ATS) workflow was technically feasible for patients with HR and VHR PCa, presenting only mild GU and GI toxicities. The estimated target dose during the beam-on phase was clinically acceptable based on the 3D-MR-based dosimetry analysis. Clinical trial registration: Chinese Clinical Trial Registry ChiCTR2000033382.

19.
Small ; : e2310340, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456789

ABSTRACT

Chondrosarcoma(CS), a prevalent primary malignant bone tumor, frequently exhibits chemotherapy resistance attributed to upregulated anti-apoptosis pathways such as the Bcl-2 family. In this manuscript, a new strategy is presented to augment chemosensitivity and mitigate systemic toxicity by harnessing a nano-enabled drug delivery hydrogel platform. The platform utilizes "PLGA-PEG-PLGA", an amphiphilic triblock copolymer combining hydrophilic polyethylene glycol (PEG) and hydrophobic polylactide glycolide (PLGA) blocks, renowned for its properties conducive to crafting a biodegradable, temperature-sensitive hydrogel. This platform is tailored to encapsulate a ratiometrically designed dual-loaded liposomes containing a first-line chemo option for CS, Doxorubicin (Dox), plus a calculated amount of small molecule inhibitor for anti-apoptotic Bcl-2 pathway, ABT-737. In vitro and in vivo evaluations demonstrate successful Bcl-2 suppression, resulting in the restoration of Dox sensitivity, evident through impeded tumor growth and amplified necrosis rates at the tumor site. This delivery system showcases remarkable thermal responsiveness, injectability, and biodegradability, all finely aligned with the clinical demands of CS treatment. Collectively, this study introduces a transformative avenue for tackling drug resistance in CS chemotherapy, offering significant clinical potential.

20.
Toxicol Res (Camb) ; 13(2): tfae039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500515

ABSTRACT

Background: Fluoride is a necessary element for human health, but excessive fluoride intake is found toxic to the liver. Previous studies confirmed that Grape seed procyanidin extract (GSPE) protects against fluoride-induced hepatic injury. However, the mechanism underlying this protective effect remains obscure. To evaluate the protective effect of GSPE against fluoride-induced hepatic injury and explore the possible hepatoprotective role of the Nrf2 signaling pathway to find effective strategies for the treatment and prevention of fluoride-induced hepatotoxicity. This study aims to explore the mechanisms by which GSPE attenuates fluoride-induced hepatotoxicity through a rat drinking water poisoning model. Methods: Hepatic injury was determined by serum biochemical parameters, oxidative parameters, HE, and TUNEL analysis. The protein expression levels of apoptosis-related proteins like Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 and the nuclear factor, erythroid 2 like 2 (Nrf2) were analyzed by Western blot. Resluts: Our results showed that GSPE administration reduced fluoride-induced elevated serum ALT and AST and enhanced the antioxidant capacity of the liver. In addition, GSPE mitigated fluoride-induced histopathological damage and reduced the liver cell apoptosis rate. Furthermore, GSPE significantly up-regulated the expression and nuclear translocation of the Nrf2 and decreased apoptosis-related proteins like Bax and caspase-3 in the hepatic. Conclusion: Taken together, GSPE exerts protective effects on the oxidative damage and apoptosis of fluoride-induced hepatic injury via the activation of the Nrf2 signaling pathway. This study provides a new perspective for the mechanism study and scientific prevention and treatment of liver injury induced by endemic fluorosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...