Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38623976

ABSTRACT

BACKGROUND: Elsholtzia belongs to the Labiatae family, which consists of herbaceous subshrubs and shrubs. Among them, volatile oils are an important chemical component in Elsholtzia, which have various bioactive medicinal and developmental values. METHODS: The references about volatile oils of Elsholtzia in this review were obtained from Web of Science, SciFinder, PubMed, Willy, Elsevier, SpringLink, ACS publications, Google Scholar, Baidu Scholar, Scopus, and CNKI. The other information about Elsholtzia was obtained from classical works or ancient books. RESULTS: Traditionally, the volatile oils from Elsholtzia were used in Chinese medicine to treat cholera, abdominal pain, vomiting, and scattered edema. Relevant research revealed that Elsholtzia contains many different types of volatile oils, and most of them display bioactivities, including anti-oxidant, anti-bacterial, anti-viral, hypolipidemic, insecticidal, and antiinflammatory activities, treating spleen and stomach. Furthermore, the applications of volatile oils were summarized and analyzed in this paper. CONCLUSION: The contents of traditional use, constituent analysis, bioactivity, and application of volatile oils from Elsholtzia were reviewed in this paper. This will provide important research value and a scientific basis for the in-depth study of the plants of Elsholtzia in the future.

2.
Food Chem ; 446: 138891, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38432135

ABSTRACT

Phyllanthus emblica Linn is not only an edible fruit with high nutritional value, but also a medicinal plant with multiple bioactivities. It is widely used in clinical practice with functions of clearing heat, cooling blood, digesting food, strengthening stomach, promoting fluid production, and relieving cough. This review summarized a wide variety of phytonutrients, including nutritional components (mineral elements, amino acids, vitamins, polysaccharides, unsaturated free fatty acids) and functional components (phenolic acids (1-34), tannins (35-98), flavonoids (99-141), sterols (142-159), triterpenoids (160-175), lignans (176-183), alkaloids (184-197), alkanes (198-212), aromatic micromolecules (213-222), other compounds (223-239)). The isolated compounds and the various extracts of P. emblica Linn presented a diverse spectrum of biological activities such as anti-oxidant, anti-cancer, anti-inflammatory, anti-bacterial, hepatoprotective, hypoglycemic, anti-atherosclerosis, neuroprotective, enhancing immunity, anti-fatigue, anti-myocardial fibrosis. The quality markers of P. emblica Linn were predicted and analyzed based on traditional medicinal properties, traditional efficacy, plant genealogy and chemical component characteristics, biogenic pathway of chemical components, measurability of chemical components, transformation characteristics of polyphenolic components, homologous characteristics of medicine and food, compound compatibility environment, and clinical applications. This review also summarized and prospected applications of P. emblica Linn in beverages, preserved fruits, fermented foods, etc. However, the contents of mechanism, structure-activity relationship, quality control, toxicity, extraction, processing of P. emblica Linn are not clear, and are worth further studies in the future.


Subject(s)
Botany , Phyllanthus emblica , Plants, Medicinal , Phyllanthus emblica/chemistry , Plant Extracts/chemistry , Phytochemicals , Ethnopharmacology
3.
Food Funct ; 14(22): 9974-9998, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37916682

ABSTRACT

Lycopene is an important pigment with an alkene skeleton from Lycopersicon esculentum, which is also obtained from some red fruits and vegetables. Lycopene is used in the food field with rich functions and serves in the medical field with multiple clinical values because it has dual functions of both medicine and food. It was found that lycopene was mainly isolated by solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction, high-intensity pulsed electric field-assisted extraction, enzymatic-assisted extraction, and microwave-assisted extraction. Meanwhile, it was also obtained via 2 synthetic pathways: chemical synthesis and biosynthesis. Pharmacological studies revealed that lycopene has anti-oxidant, hypolipidemic, anti-cancer, immunity-enhancing, hepatoprotective, hypoglycemic, cardiovascular-protective, anti-inflammatory, neuroprotective, and osteoporosis-inhibiting effects. The application of lycopene mainly includes food processing, animal breeding, and medical cosmetology fields. It is hoped that this review will provide some useful information and guidance for future study and exploitation of lycopene.


Subject(s)
Carotenoids , Solanum lycopersicum , Lycopene/pharmacology , Lycopene/analysis , Carotenoids/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Fruit/chemistry
4.
Article in English | MEDLINE | ID: mdl-37259928

ABSTRACT

BACKGROUND: Vicatia thibetica de Boiss is a common Tibetan medicine used for both medicine and food, belonging to the family Apiaceae. This plant has the functions of dispelling wind, removing dampness, dispersing cold, and relieving pain. It has great development potential and application prospects in food development and medicinal value. METHODS: The related references on botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss had been retrieved from both online and offline databases, including PubMed, ScienceDirect, Web of Science, Elsevier, Willy, SpringLink, SciFinder, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. RESULTS: V. thibetica de Boiss exerts nourishing, appetizing, and digestive effects according to the theory of Tibetan medicine. Phytochemical reports have revealed that V. thibetica de Boiss contains flavonoids, coumarins, sterols, and organic acids. Meanwhile, the quantitative analysis of the chemical constituents of V. thibetica de Boiss has been done by means of UPLC-Q-TOF-MS. It has also been found that V. thibetica de Boiss possesses multiple pharmacological activities, including anti-fatigue, anti-oxidant, anti-aging, and non-toxic activities. CONCLUSION: This paper has comprehensively summarized botany, traditional uses, phytochemistry, quantitative analysis, and pharmacology of V. thibetica de Boiss. It will not only provide an important clue for further studying V. thibetica de Boiss, but also offer an important theoretical basis and valuable reference for in-depth research and exploitation of this plant in the future.

5.
J Agric Food Chem ; 71(12): 4769-4788, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36930583

ABSTRACT

Hippophae rhamnoides L. (sea buckthorn), consumed as a food and health supplement worldwide, has rich nutritional and medicinal properties. Different parts of H. rhamnoides L. were used in traditional Chinese medicines for relieving cough, aiding digestion, invigorating blood circulation, and alleviating pain since ancient times. Phytochemical studies revealed a wide variety of phytonutrients, including nutritional components (proteins, minerals, vitamins, etc.) and functional components like flavonoids (1-99), lignans (100-143), volatile oils (144-207), tannins (208-230), terpenoids (231-260), steroids (261-270), organic acids (271-297), and alkaloids (298-305). The pharmacological studies revealed that some crude extracts or compounds of H. rhamnoides L. demonstrated various health benefits, such as anti-inflammatory, antioxidant, hepatoprotective, anticardiovascular disease, anticancer, hypoglycemic, hypolipidemic, neuroprotective, antibacterial activities, and their effective doses and experimental models were summarized and analyzed in this paper. The quality markers (Q-markers) of H. rhamnoides L. were predicted and analyzed based on protobotanical phylogeny, traditional medicinal properties, expanded efficacy, pharmacokinetics and metabolism, and component testability. The applications of H. rhamnoides L. in juice, wine, oil, ferment, and yogurt were also summarized and future prospects were examined in this review. However, the mechanism and structure-activity relationship of some active compounds are not clear, and quality control and potential toxicity are worth further study in the future.


Subject(s)
Botany , Hippophae , Oils, Volatile , Hippophae/chemistry , Phytochemicals/pharmacology , Antioxidants
6.
Comb Chem High Throughput Screen ; 26(10): 1822-1835, 2023.
Article in English | MEDLINE | ID: mdl-36366841

ABSTRACT

BACKGROUND: Pyrethrum tatsienense (Bureau & Franch.) Ling ex C. Shih (PTLCS) belongs to the family Compositae, which is a perennial medicinal plant mainly distributed in the Qinghai-Tibet Plateau of China. This review provides a comprehensive summary of the ethnopharmacology, phytochemistry, and pharmacology of PTLCS. This review offers valuable references and guidance for researching PTLCS in depth. METHODS: The related references of PTLCS were retrieved from an online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on. RESULTS: PTLCS is widely reported for treating headaches, head injuries, traumatic injuries, anabrosis, impetigo, hepatitis, and other diseases in the medical field. Phytochemical research revealed that this plant contained flavonoid aglycones, flavonoid glycosides, xanthones, triterpenoids, coumarins, polyacetylenes, volatile oils, and other compounds. Meanwhile, PTLCS exhibited extensive pharmacological activities including anti-cardiac ischemia, anti-hypoxia, hepatoprotective, anti- inflammatory and analgesic, and antioxidant activities. CONCLUSIONS: PTLCS is widely used as a Tibetan medicine, which has a variety of chemicals with diverse bioactivities. Therefore, further studies are necessary to perform on the PTLCS to assay biological activities, discover their bioactive constituents, and reveal pharmacological mechanisms. This review may supply an important theoretical basis and valuable reference for in-depth research and exploitations of PTLCS.


Subject(s)
Chrysanthemum cinerariifolium , Chrysanthemum , Ethnopharmacology , Plant Extracts/chemistry , China , Phytochemicals/pharmacology , Phytotherapy
7.
Comb Chem High Throughput Screen ; 26(6): 1083-1092, 2023.
Article in English | MEDLINE | ID: mdl-35984024

ABSTRACT

BACKGROUND: Highland barley Monascus purpureus Went, a traditional Tibetan medicine with food functions, which is fermented by Monascus purpureus with highland barley as substrate. It possesses various medical functions of promoting blood circulation and removing blood stasis, invigorating spleen and promoting digestion in folk of the Qinghai-Tibet Plateau in China. This review provides a comprehensive overview of ethnopharmacology, phytochemistry, and pharmacology of highland barley Monascus purpureus Went. METHODS: The references of highland barley Monascus purpureus Went were retrieved from the online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on. RESULTS: Phytochemical research revealed that highland barley Monascus purpureus Went contained multiple chemical components, including Monascus pigments, monacolins, lactones, and other compounds. The reported pharmacological activities of highland barley Monascus purpureus Went included hypolipidemic, anti-nonalcoholic fatty liver disease, and hepatoprotective activities. CONCLUSION: In a word, botany, ethnopharmacology, phytochemistry and pharmacology of highland barley Monascus purpureus Went were reviewed comprehensively in this paper. In the future, highland barley Monascus purpureus Went needs further study, such as paying more attention to quality control and utilization of medicine. Therefore, this review may provide a theoretical basis and valuable data for future studies and exploitations on highland barley Monascus purpureus Went.


Subject(s)
Drugs, Chinese Herbal , Hordeum , Monascus , Ethnopharmacology , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Phytochemicals/pharmacology , Phytotherapy , Plant Extracts/pharmacology
8.
Z Naturforsch C J Biosci ; 77(11-12): 501-507, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35749126

ABSTRACT

Two new alkaloids (1 and 2), named 1,7-dimethoxy-2'-prenyl-1',9-dihydropyrrolo-carbazole (1) and 1,7-dimethoxy-4',5'-dimethylcyclopenta-carbazole-1',3'-dione (2), along with thirteen known alkaloids (3-15) were isolated by means of silica gel, sephadex LH-20, and semi-preparative HPLC from the CHCl3 extraction of Corydalis decumbens for the first time. Their structures were determined by NMR, MS, IR, UV, and related references. Compounds (1-15) were evaluated for their antidepressant activities by measuring inhibition of monoamine neurotransmitter reuptake in vitro. Among them, compounds 1, 2, 4, and 6 showed certain antidepressant activities.


Subject(s)
Alkaloids , Corydalis , Corydalis/chemistry , Rhizome , Alkaloids/chemistry , Antidepressive Agents , Carbazoles
9.
Z Naturforsch C J Biosci ; 77(5-6): 197-206, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35286786

ABSTRACT

The aim is to establish a model of nonalcoholic fatty liver disease (NAFLD) caused by feeding with high-fat, high-fructose, and high-cholesterol diet (HFFCD) in golden hamsters, and to investigate the characteristics of the NAFLD model and metabolite changes of liver tissue. Golden hamsters were fed HFFCD or control diets for six weeks. Body weight, abdominal fat index, and liver index was assessed, serum parameters, hepatic histology, and liver metabolites were examined. The results showed that body weight, abdominal fat, and liver index of hamsters were significantly increased in the model group, the level of serum total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C) were significantly increased in model group as well, and high density lipoprotein-cholesterol (HDL-C) was significantly decreased. In addition, lipid deposition in liver tissue formed fat vacuoles of different sizes. Metabonomics analysis of the liver showed that the metabolic pathways of sphingolipid, glycerophospholipids, and arginine biosynthesis were disordered in the NAFLD model. The modeling method is simple, short time, and uniform. It can simulate the early fatty liver caused by common dietary factors, and provides an ideal model for the study of the initial pathogenesis and therapeutic drugs for NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Body Weight , Cholesterol , Cricetinae , Diet, High-Fat , Liver/metabolism , Mesocricetus , Metabolomics , Non-alcoholic Fatty Liver Disease/metabolism
10.
Data Brief ; 40: 107773, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028346

ABSTRACT

Nonalcoholic Fatty Liver Disease (NAFLD) is a serious problem endangering human health in the world. The pathogenesis of this disease is often accompanied by lipid metabolism disorder and can cause liver lipid accumulation. Highland barley Monascus purpureus Went extract (HBMPWE) can inhibit the liver lipid accumulation caused by a high-fat, high-fructose, high-cholesterol diet. However, it is not clear what changes have taken place in the process of liver lipid metabolism after HBMPWE administration. To fill this knowledge gap and to support the findings published in the companion research article entitled "Highland Barley Monascus purpureus Went Extract Ameliorates High-Fat, High-Fructose, High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease by Regulating Lipid Metabolism in Golden Hamsters" [1], we provided important information related to the liver differential metabolites and identified twenty-one differential metabolites of liver metabolism. In the model group, the levels of lactate, linoleic acid, and malic acid increased significantly. After HBMPWE treatment, the expressions of these metabolites reduced significantly. Therefore, these liver differential metabolites could be used as biological signatures reflecting the severity of NAFLD and HBMPWE treatment outcomes.

11.
J Ethnopharmacol ; 286: 114922, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34923087

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hepatocyte lipid accumulation is the main feature in the early stage of nonalcoholic fatty liver disease (NAFLD). Highland barley Monascus purpureus Went (HBMPW), a fermentation product of Hordeum vulgare Linn. var. nudum Hook. f. has traditionally been used as fermented foods in Tibet with the effect of reducing blood lipid in folk medicine. AIM OF THE STUDY: This study investigated the protective effects and molecular mechanism of highland barley Monascus purpureus Went extract (HBMPWE) on NAFLD in syrian golden hamster fed with high-fat, high-fructose, high-cholesterol diet (HFFCD). MATERIALS AND METHODS: HFFCD-induced NAFLD golden hamster model was established and treated with HBMPWE. Liver index, biochemical index, and hematoxylin and eosin (HE) staining were observed. Liver metabolomics and western blot analysis were employed. RESULTS: Our study found that HBMPWE ameliorated HFFCD induced dyslipidemia, weight gain and elevated the liver index. In addition, HBMPWE treatment significantly attenuated lipid accumulation in the liver and modulated lipid metabolism (sphingolipid, glycerophospholipid). Our data demonstrated that HBMPWE not only regulated the expression of proteins related to fatty acid synthesis and decomposition (SREBP-1/ACC/FAS/AceS1, PPARα/ACSL/CPT1/ACOX1), but also regulated the expression of proteins related to cholesterol synthesis and clearance (HMGCR, LDLR, CYP7A1). CONCLUSIONS: HBMPWE improved NAFLD through multiple pathways and multiple targets in body metabolism and could be used as a functional food to treat NAFLD and other lipid metabolic disorders.


Subject(s)
Fermented Foods , Lipid Metabolism/drug effects , Monascus/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Diet, High-Fat , Disease Models, Animal , Fatty Acids/biosynthesis , Fructose , Hordeum/metabolism , Male , Medicine, Tibetan Traditional , Mesocricetus , Tibet
12.
Fitoterapia ; 156: 105090, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34838621

ABSTRACT

Highland barley Monascus has historically been used in solid state fermentation and traditional fermented foods in Tibet. It is possessed of the characteristics of medicine and food. Three new 8,13-unsaturated benzocyclodiketone-conjugated Monascus pigments (1-3), three new benzofuran Monascus pigments (4-6), three new butylated malonyl Monascus pigments (7-9), and eleven known Monascus pigment derivatives (10-20) were isolated from highland barley Monascus for the first time. Their structures were determined by analyzing NMR, MS, UV, and IR spectral data and compared with relevant references. Among them, compounds 2, 4, 6 showed important inhibition of pancreatic lipase activity, and decreased significantly FFA-induced lipid accumulation in HepG2 liver cells. Additionally, compounds 1, 10, 14, 16, 18 exhibited certain hepatoprotective activities against the damage in acetaminophen-induced HepG2 cells. The plausible biogenetic pathway and preliminary structure activity relationship of the selected compounds were scientifically summarized and discussed in this work.


Subject(s)
Hypolipidemic Agents/chemistry , Liver/drug effects , Monascus/chemistry , Pigments, Biological/chemistry , Gas Chromatography-Mass Spectrometry , Hordeum/microbiology , Hypolipidemic Agents/isolation & purification , Hypolipidemic Agents/pharmacology , Mass Spectrometry , Pigments, Biological/isolation & purification , Pigments, Biological/pharmacology , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Structure-Activity Relationship
13.
Bioorg Chem ; 117: 105450, 2021 12.
Article in English | MEDLINE | ID: mdl-34710667

ABSTRACT

The fruit of Citrus medica L. var. sarcodactylis Swingle is not only used as a traditional medicinal plant, but also served as a delicious food. Six new (3'→7″)-biflavonoids (1-6), and twelve known biflavonoid derivatives (7-18) were isolated and characterized from the fruits of C. medica L. var. sarcodactylis Swingle for the first time. Their structures were determined by extensive and comprehensive analyzing NMR, HR-ESI-MS, UV, and IR spectral data coupled with the data described in the literature. Compounds (1-18) were evaluated for their hypolipidemic activities with Orlistat as the positive control, and assayed for their immunosuppressive activities with Dexamethasone as the positive control, respectively. Among them, compounds (1-3) exhibited moderate inhibition of pancreatic lipase activity by inhibiting 68.56 ± 1.40%, 56.18 ± 1.57%, 53.51 ± 1.59% of pancreatic lipase activities at the concentration of 100 µM, respectively. Compounds (4-6) and 8 showed potent immunosuppressive activities with the IC50 values from 16.83 ± 1.32 to 50.90 ± 1.79 µM. The plausible biogenetic pathway and preliminary structure activity relationship of the selected compounds were scientifically summarized and discussed in this study.


Subject(s)
Biflavonoids/pharmacology , Citrus/chemistry , Enzyme Inhibitors/pharmacology , Hypolipidemic Agents/pharmacology , Immunosuppressive Agents/pharmacology , Lipase/antagonists & inhibitors , Animals , Biflavonoids/chemistry , Biflavonoids/isolation & purification , Cell Proliferation/drug effects , Cell Survival/drug effects , Concanavalin A/antagonists & inhibitors , Concanavalin A/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Fruit/chemistry , Hep G2 Cells , Humans , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Lipase/metabolism , Molecular Structure , Pancreas/enzymology , Spleen/drug effects , Structure-Activity Relationship , Swine
14.
Z Naturforsch C J Biosci ; 76(11-12): 459-465, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34002579

ABSTRACT

Flavonolignans, for example, silymarin and silybin, have interesting biological activities. For the first time, three new flavonolignans named oenanthenoid A-C (1-3) and nine known flavonolignan derivatives (4-12) were isolated from Oenanthe javanica. Comprehensive spectroscopic data analysis and references were used to identify all of the compounds. The anti inflammatory activities of these isolates (1-12) on RAW264.7 macrophage cells were investigated. Three new compounds (1-3) demonstrated anti inflammatory activity with IC50 values ranging from 6.5 ± 0.6 to 14.7 ± 1.6 µM. Furthermore, two compounds (11 and 12) demonstrated moderate anti inflammatory activity, with IC50 values ranging from 24.1 ± 1.2 to 62.5 ± 1.9 µM.


Subject(s)
Oenanthe , Silymarin , Anti-Inflammatory Agents/pharmacology
15.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1430-1437, 2021 Mar.
Article in Chinese | MEDLINE | ID: mdl-33787141

ABSTRACT

To study phenylpropanoids from Eleocharis dulcis and their hepatoprotective activities. The compounds were separated and purified from ethyl acetate part by conventional column chromatography and preparative liquid chromatography, and their structures were identified by various spectral techniques. The HL-7702 cells damage model of hepatocytes induced by APAP was used to screen and evaluate the hepatoprotective activities of these compounds. Sixteen compounds were isolated from ethyl acetate part of E. dulcis, and their structures were identified as 6'-(4″-hydroxy-3″-methoxy-phenylpropenyl)-1-(10-methoxy-phenylacetone)-1'-O-ß-D-glucopy-ranoside(1), susaroyside A(2), clausenaglycoside B(3), clausenaglycoside C(4), clausenaglycoside D(5), emarginone A(6), emarginone B(7), thoreliin B(8), 4-O-(1',3'-dihydroxypropan-2'-yl)-dihydroconiferyl alcohol 9-O-ß-D-glucopyranoside(9), 2-[4-(3-methoxy-1-propenyl)-2-methoxy-phenoxy]-propane-1,3-diol(10), 6'-O-(E-cinnamoyl)-coniferin(11), methyl 3-(2-O-ß-D-glucopyranosyl-3,4,5,6-tetramethoxyphenyl) propanoate(12), clausenaglycoside A(13), 9-O-(E-cinnamoyl)-coniferin(14), 6'-O-(E-cinnamoyl)-syringin(15), 2'-O-(E-cinnamoyl)-syringin(16). Among them, compound 1 was a new compound. Compounds 2-16 were isolated from this plant for the first time. Among them, compounds 2 and 8 showed certain hepatoprotective activities.


Subject(s)
Eleocharis , Chromatography , Hepatocytes , Plant Extracts
16.
Bioorg Chem ; 107: 104622, 2021 02.
Article in English | MEDLINE | ID: mdl-33454508

ABSTRACT

The fruit of Citrus medica L. var. sarcodactylis Swingle is a functional food with rich nutrients and medicinal values because of its content of bioactive compounds. A bioactivity-guided chemical investigation from the fruits of C. medica L. var. sarcodactylis Swingle afforded three new benzodioxane neolignans (1-3), three new phenanthrofuran neolignan glycosides (4-6), two new biphenyl-ketone neolignans (7-8), two new 1',7'-bilignan neolignans (9-10), as well as fourteen known neolignan derivatives (11-24), which were isolated and characterized from the fruits of C. medica L. var. sarcodactylis Swingle for the first time. These neolignan derivatives were determined by extensive and comprehensive analyzing NMR, HR-ESI-MS, UV, IR spectral data and compared with the data described in the literature. Among them, compounds 1-3 and 12-13 exhibited moderate hepatoprotective activities to improve the survival rates of HepG2 cells from 46.26 ± 1.90% (APAP, 10 mM) to 67.23 ± 4.25%, 62.87 ± 4.43%, 60.06 ± 6.34%, 56.75 ± 2.30%, 58.35 ± 6.14%, respectively. Additionally, compounds 7-8 and 21-22 displayed moderate neuroprotective activities to raise the survival rates of PC12 cells from 55.30 ± 2.25% to 66.94 ± 3.37%, 70.98 ± 5.05%, 64.64 ± 1.93%, and 62.81 ± 4.11% at 10 µM, respectively. The plausible biogenetic pathway and preliminary structure-activity relationship of the selected compounds were scientifically summarized and discussed in this paper.


Subject(s)
Citrus/chemistry , Lignans/chemistry , Protective Agents/chemistry , Animals , Cell Survival/drug effects , Citrus/metabolism , Fruit/chemistry , Fruit/metabolism , Hep G2 Cells , Humans , Lignans/isolation & purification , Lignans/pharmacology , Magnetic Resonance Spectroscopy , Molecular Conformation , PC12 Cells , Protective Agents/isolation & purification , Protective Agents/pharmacology , Rats , Structure-Activity Relationship
17.
Fitoterapia ; 149: 104812, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33359423

ABSTRACT

Cucumis bisexualis is a favorite wild fruit with high nutritional and medicinal values because of its bioactive constituents. Four previously undescribed coumarin-homoisoflavonoid derivatives (1-4), together with seven known coumarin and homoisoflavonoid derivatives (5-11) were isolated from the fruits of C. bisexualis for the first time. All the compounds were elucidated by their extensive and comprehensive spectroscopic data and references. Compounds (1-11) were evaluated for their hepatoprotective activities in HepG2 cells by the acetaminophen (APAP)-induced damage model at 10.0 µM with bicyclol as the positive control. Among them, compounds 1, 3, 5, and 6 showed moderately hepatoprotective activities to improve the HepG2 cell survival rates from 51.68 ± 2.49% (APAP, 10 mM) to 71.55 ± 4.08%, 65.95 ± 4.39%, 60.77 ± 3.44%, 62.94 ± 2.30%, respectively.


Subject(s)
Coumarins/pharmacology , Cucumis/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Protective Agents/pharmacology , Acetaminophen/toxicity , China , Flavonoids/isolation & purification , Hep G2 Cells , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Protective Agents/isolation & purification
18.
Fitoterapia ; 146: 104733, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32979464

ABSTRACT

Chenopodium album Linn is used as the traditional Chinese medicine for treating cough, anorexia, piles, dysentery, diarrhea, and kills small worms in China. Nine new tropolones (1-9), and fourteen known tropolone derivatives (10-23) were elucidated by comprehensive spectroscopic data analysis and references from C. album Linn for the first time. Compounds (1-4) and compounds (13-14) displayed notably hepatoprotective activities in intro for lowering AST levels (19.63 ± 2.34 to 29.87 ± 1.27 U•L-1) and ALT levels (15.21 ± 1.18 to 20.29 ± 2.11 U•L-1) in HepG2 cells treated with H2O2. Compounds (8-9) and compounds (15-17) exhibited moderate antiproliferative activities in vitro against the human tumor cell lines with IC50 values ranging from 0.5 ± 0.2 to 15.5 ± 2.7 µM. A preliminary structure activity relationship was summarized and discussed scientifically, which provided new clues to design novel hepatoprotective and antiproliferative drugs based on the tropolone derivatives.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Chenopodium album/chemistry , Protective Agents/pharmacology , Tropolone/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , China , Drugs, Chinese Herbal , Hep G2 Cells , Humans , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Components, Aerial/chemistry , Protective Agents/isolation & purification , Structure-Activity Relationship , Tropolone/isolation & purification
19.
Z Naturforsch C J Biosci ; 75(9-10): 327-332, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32568735

ABSTRACT

Bioactivity-guided phytochemical investigation of Cucumis bisexualis has led to the isolation of three new coumarin-aurone heterodimers (1-3), along with six aurone derivatives (4-9) were isolated from C. bisexualis for the first time. Their structures were determined by their extensive spectroscopic data and comparison with the values reported in the references. All isolated compounds (1-9) were evaluated for their hepatoprotective activities on human L-O2 cells, which compared with positive control of Bifendatatum. Among them, compounds 1, 2, and 7 exhibited moderate hepatoprotective activities to promote effects on the proliferation of L-O2 cells.


Subject(s)
Benzofurans/pharmacology , Cucumis/chemistry , Hepatocytes/cytology , Phytochemicals/pharmacology , Benzofurans/chemistry , Benzofurans/isolation & purification , Carbon Tetrachloride/adverse effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Coumarins , Hepatocytes/drug effects , Humans , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/isolation & purification
20.
J Agric Food Chem ; 68(24): 6564-6575, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32437606

ABSTRACT

The fruit of Hippophae rhamnoides L. has been used for centuries in Europe and Asia as a food with high nutritional and medicinal values. In this study, a bioactivity-guided phytochemical investigation of H. rhamnoides L. has resulted in four new dimethylallylated flavonolignans (1-4), four new isopropylpentenone-flavonolignan heterodimers (5-8), two new geranylated flavonolignans (9 and 10), and 14 known flavonolignan derivatives (11-24); they were elucidated by their spectrometric and spectroscopic methods, including HR-ESI-MS, NMR, IR, and UV from the fruit of H. rhamnoides L. for the first time. Among them, compounds 2, 5, 6, 20, and 21 showed potent immunosuppressive activities with IC50 values from 19.42 ± 3.91 to 48.05 ± 12.56 µM. Meanwhile, compounds 1, 4, 11, 12, and 13 showed moderate neuroprotective activities, which increased the cell survival rate from 50.30 ± 4.24% for the model group to 71.63 ± 3.04%, 70.02 ± 4.13%, 61.53 ± 5.93%, 61.08 ± 3.58%, and 65.68 ± 4.88% at 10 µM, respectively. The hypothetical biogenetic pathway and preliminary structure-activity relationship were found and discussed scientifically.


Subject(s)
Flavonolignans/chemistry , Hippophae/chemistry , Immunosuppressive Agents/chemistry , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Flavonolignans/pharmacology , Fruit/chemistry , Humans , Immunosuppressive Agents/pharmacology , Molecular Structure , Neurons/cytology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...