Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Cancer Res Clin Oncol ; 149(20): 17921-17931, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37955685

ABSTRACT

BACKGROUND: The survival trends and prognostic factors of patients with extraosseous plasmacytoma (EOP) or extramedullary plasmacytoma (EMP) have not been reported in recent years. The objective of this study was to develop a novel nomogram and risk stratification system for predicting the overall survival (OS) of elderly patients with EOP based on the Surveillance, Epidemiology, and End Results (SEER) database. METHODS: The demographic characteristics of 900 patients aged 60 years and above, diagnosed with EOP between 2000 and 2019, were extracted from the SEER database. The patient population was randomly divided into a training cohort and an internal validation cohort in a ratio of 7:3. Univariate and multivariate Cox regression analyses were conducted to identify independent predictors of prognosis in elderly EOP patients, followed by developing a nomogram for prognostic assessment. The performance of the model was evaluated through receiver-operating characteristic (ROC) curves, C-index, calibration curves for calibration accuracy assessment, and decision curve analysis (DCA) to assess its clinical utility. All elderly EOP patients were stratified into three risk subgroups by cutoff value utilizing X-tile software based on their total OS scores for comparative analysis purposes. Kaplan-Meier (K-M) survival curve analysis was employed to validate any observed differences in OS among these three risk groups. RESULTS: Six factors including age, year of diagnosis, marital status, primary site, surgery, and prior tumor history were identified to be independently predictive of the OS of elderly patients with EOP, and these predictors were included in the construction of the nomogram. The 1-, 3-, and 5-year area under the curves (AUCs) for OS were 0.717, 0.754, and 0.734 in the training cohort and 0.740, 0.730, and 0.765 in the validation cohort, respectively. The C-index values in the two cohorts were 0.695 and 0.690. The calibration curves and DCA exhibit commendable consistency and validity, respectively, thereby demonstrating their robust performance. The training set was stratified into low-, medium-, and high-risk subgroups based on the optimal cutoff points (167.8 and 264.8) identified. The K-M curve and cumulative risk curve exhibited statistically significant disparities in survival rates among the groups. CONCLUSIONS: We developed a nomogram and risk classification system, which can serve as an intuitive and effective tool for clinicians to enhance the prediction of OS in elderly EOP patients, thereby facilitating the formulation of more rational and personalized treatment strategies.


Subject(s)
Nomograms , Plasmacytoma , Aged , Humans , Prognosis , Area Under Curve , Calibration , SEER Program
2.
Aging (Albany NY) ; 15(16): 8220-8236, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37606987

ABSTRACT

Multiple myeloma (MM) is the second most common hematological malignancy, in which the dysfunction of the ubiquitin-proteasome pathway is associated with the pathogenesis. The valosin containing protein (VCP)/p97, a member of the AAA+ ATPase family, possesses multiple functions to regulate the protein quality control including ubiquitin-proteasome system and molecular chaperone. VCP is involved in the occurrence and development of various tumors while still elusive in MM. VCP inhibitors have gradually shown great potential for cancer treatment. This study aims to identify if VCP is a therapeutic target in MM and confirm the effect of a novel inhibitor of VCP (VCP20) on MM. We found that VCP was elevated in MM patients and correlated with shorter survival in clinical TT2 cohort. Silencing VCP using siRNA resulted in decreased MM cell proliferation via NF-κB signaling pathway. VCP20 evidently inhibited MM cell proliferation and osteoclast differentiation. Moreover, exosomes containing VCP derived from MM cells partially alleviated the inhibitory effect of VCP20 on cell proliferation and osteoclast differentiation. Mechanism study revealed that VCP20 inactivated the NF-κB signaling pathway by inhibiting ubiquitination degradation of IκBα. Furthermore, VCP20 suppressed MM cell proliferation, prolonged the survival of MM model mice and improved bone destruction in vivo. Collectively, our findings suggest that VCP is a novel target in MM progression. Targeting VCP with VCP20 suppresses malignancy progression of MM via inhibition of NF-κB signaling pathway.


Subject(s)
Exosomes , Multiple Myeloma , Animals , Mice , ATPases Associated with Diverse Cellular Activities , Cell Differentiation , Cell Proliferation , NF-kappa B , Osteoclasts , Proteasome Endopeptidase Complex , Signal Transduction , Ubiquitins , Valosin Containing Protein
4.
Acta Pharm Sin B ; 12(8): 3313-3325, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35967285

ABSTRACT

Multiple myeloma (MM) is still an incurable hematologic malignancy, which is eagerly to the discovery of novel therapeutic targets and methods. N-acetyltransferase 10 (NAT10) is the first reported regulator of mRNA acetylation that is activated in many cancers. However, the function of NAT10 in MM remains unclear. We found significant upregulation of NAT10 in MM patients compared to normal plasma cells, which was also highly correlated with MM poor outcome. Further enforced NAT10 expression promoted MM growth in vitro and in vivo, while knockdown of NAT10 reversed those effects. The correlation analysis of acetylated RNA immunoprecipitation sequencing (acRIP-seq) and ribosome profiling sequencing (Ribo-seq) combined with RIP-PCR tests identified centrosomal protein 170 (CEP170) as an important downstream target of NAT10. Interfering CEP170 expression in NAT10-OE cells attenuated the acceleration of cellular growth caused by elevated NAT10. Moreover, CEP170 overexpression promoted cellular proliferation and chromosomal instability (CIN) in MM. Intriguingly, remodelin, a selective NAT10 inhibitor, suppressed MM cellular growth, induced cellular apoptosis in vitro and prolonged the survival of 5TMM3VT mice in vivo. Collectively, our data indicate that NAT10 acetylates CEP1 70 mRNA to enhance CEP170 translation efficiency, which suggests that NAT10 may serve as a promising therapeutic target in MM.

5.
Cancer Commun (Lond) ; 42(11): 1185-1206, 2022 11.
Article in English | MEDLINE | ID: mdl-36042007

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is the second most common hematological malignancy. An overwhelming majority of patients with MM progress to serious osteolytic bone disease. Aminoacyl-tRNA synthetase-interacting multifunctional protein 1 (AIMP1) participates in several steps during cancer development and osteoclast differentiation. This study aimed to explore its role in MM. METHODS: The gene expression profiling cohorts of MM were applied to determine the expression of AIMP1 and its association with MM patient prognosis. Enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting were used to detect AIMP1 expression. Protein chip analysis, RNA-sequencing, and chromatin immunoprecipitation and next-generation sequencing were employed to screen the interacting proteins and key downstream targets of AIMP1. The impact of AIMP1 on cellular proliferation was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in vitro and a xenograft model in vivo. Bone lesions were evaluated using tartrate-resistant acid phosphatase staining in vitro. A NOD/SCID-TIBIA mouse model was used to evaluate the effect of siAIMP1-loaded exosomes on bone lesion formation in vivo. RESULTS: AIMP1 expression was increased in MM patients and strongly associated with unfavorable outcomes. Increased AIMP1 expression promoted MM cell proliferation in vitro and in vivo via activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Protein chip assays and subsequent experiments revealed that AIMP1 interacted with acidic leucine-rich nuclear phosphoprotein 32 family member A (ANP32A) to regulate histone H3 acetylation. In addition, AIMP1 increased histone H3 acetylation enrichment function of GRB2-associated and regulator of MAPK protein 2 (GAREM2) to increase the phosphorylation of extracellular-regulated kinase 1/2 (p-ERK1/2). Furthermore, AIMP1 promoted osteoclast differentiation by activating nuclear factor of activated T cells c1 (NFATc1) in vitro. In contrast, exosome-coated small interfering RNA of AIMP1 effectively suppressed MM progression and osteoclast differentiation in vitro and in vivo. CONCLUSIONS: Our data demonstrate that AIMP1 is a novel regulator of histone H3 acetylation interacting with ANP32A in MM, which accelerates MM malignancy via activation of the MAPK signaling pathway.


Subject(s)
Amino Acyl-tRNA Synthetases , Multiple Myeloma , Nuclear Proteins , RNA-Binding Proteins , Animals , Humans , Mice , Acetylation , Amino Acyl-tRNA Synthetases/metabolism , Cytokines , Histones/metabolism , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism
6.
Oncogene ; 41(10): 1482-1491, 2022 03.
Article in English | MEDLINE | ID: mdl-35075244

ABSTRACT

Multiple myeloma (MM) is still incurable partially due to lacking effective therapeutic targets. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in many cancers, however few researches are executed in MM. We first screened the m6A-related genes in MM patient cohorts and correlated these genes with patient outcomes. We found that YTHDF2, a well-recognized m6A reader, was increased in MM patients and associated with poor outcomes. Decreased YTHDF2 expression hampered MM cell proliferation in vitro and in vivo, while enforced YTHDF2 expression reversed those effects. The analyses of m6A-RIP-seq and RIP-PCR indicated that STAT5A was the downstream target of YTHDF2, which was binding to the m6A modification site of STAT5A to promote its mRNA degradation. ChIP-seq and PCR assays revealed that STAT5A suppressed MM cell proliferation by occupying the transcription site of MAP2K2 to decrease ERK phosphorylation. In addition, we confirmed that YTHDF2 mediated the unphosphorylated form of STAT5A to inhibit the expression of MAP2K2/p-ERK. In conclusion, our study highlights that YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in MM proliferation and targeting YTHDF2 may be a promising therapeutic strategy.


Subject(s)
Multiple Myeloma , Adenosine/metabolism , Cell Proliferation/genetics , Humans , MAP Kinase Kinase 2/metabolism , Multiple Myeloma/genetics , RNA Stability , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Tumor Suppressor Proteins/metabolism
7.
J Exp Clin Cancer Res ; 41(1): 11, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991674

ABSTRACT

BACKGROUND: Currently, multiple myeloma (MM) is still an incurable plasma cell malignancy in urgent need of novel therapeutic targets and drugs. METHODS: Bufalin was known as a highly toxic but effective anti-cancer compound. We used Bufalin as a probe to screen its potential targets by proteome microarray, in which AHSA1 was the unique target of Bufalin. The effects of AHSA1 on cellular proliferation and drug resistance were determined by MTT, western blot, flow cytometry, immunohistochemistry staining and xenograft model in vivo. The potential mechanisms of Bufalin and KU-177 in AHSA1/HSP90 were verified by co-immunoprecipitation, mass spectrometry, site mutation and microscale thermophoresis assay. RESULTS: AHSA1 expression was increased in MM samples compared to normal controls, which was significantly associated with MM relapse and poor outcomes. Furthermore, AHSA1 promoted MM cell proliferation and proteasome inhibitor (PI) resistance in vitro and in vivo. Mechanism exploration indicated that AHSA1 acted as a co-chaperone of HSP90A to activate CDK6 and PSMD2, which were key regulators of MM proliferation and PI resistance respectively. Additionally, we identified AHSA1-K137 as the specific binding site of Bufalin on AHSA1, mutation of which decreased the interaction of AHSA1 with HSP90A and suppressed the function of AHSA1 on mediating CDK6 and PSMD2. Intriguingly, we discovered KU-177, an AHSA1 selective inhibitor, and found KU-177 targeting the same site as Bufalin. Bufalin and KU-177 treatments hampered the proliferation of flow MRD-positive cells in both primary MM and recurrent MM patient samples. Moreover, KU-177 abrogated the cellular proliferation and PI resistance induced by elevated AHSA1, and decreased the expression of CDK6 and PSMD2. CONCLUSIONS: We demonstrate that AHSA1 may serve as a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.


Subject(s)
Antineoplastic Agents/therapeutic use , Bufanolides/therapeutic use , Gene Expression Profiling/methods , Molecular Chaperones/metabolism , Multiple Myeloma/drug therapy , Proteasome Inhibitors/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Cell Proliferation , Disease Models, Animal , Humans , Mice , Mice, Inbred NOD , Multiple Myeloma/pathology , Proteasome Inhibitors/pharmacology , Transfection
8.
Mol Cancer ; 20(1): 84, 2021 06 05.
Article in English | MEDLINE | ID: mdl-34090465

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is still incurable and characterized by clonal expansion of plasma cells in the bone marrow (BM). Therefore, effective therapeutic interventions must target both myeloma cells and the BM niche. METHODS: Cell proliferation, drug resistance, and chromosomal instability (CIN) induced by CHEK1 were confirmed by Giemsa staining, exon sequencing, immunofluorescence and xenograft model in vivo. Bone lesion was evaluated by Tartrate-resistant acid phosphatase (TRAP) staining. The existence of circCHEK1_246aa was evaluated by qPCR, Sanger sequencing and Mass Spectrometer. RESULTS: We demonstrated that CHEK1 expression was significantly increased in human MM samples relative to normal plasma cells, and that in MM patients, high CHEK1 expression was associated with poor outcomes. Increased CHEK1 expression induced MM cellular proliferation and evoked drug-resistance in vitro and in vivo. CHEK1-mediated increases in cell proliferation and drug resistance were due in part to CHEK1-induced CIN. CHEK1 activated CIN, partly by phosphorylating CEP170. Interestingly, CHEK1 promoted osteoclast differentiation by upregulating NFATc1 expression. Intriguingly, we discovered that MM cells expressed circCHEK1_246aa, a circular CHEK1 RNA, which encoded and was translated to the CHEK1 kinase catalytic center. Transfection of circCHEK1_246aa increased MM CIN and osteoclast differentiation similarly to CHEK1 overexpression, suggesting that MM cells could secrete circCHEK1_246aa in the BM niche to increase the invasive potential of MM cells and promote osteoclast differentiation. CONCLUSIONS: Our findings suggest that targeting the enzymatic catalytic center encoded by CHEK1 mRNA and circCHEK1_246aa is a promising therapeutic modality to target both MM cells and BM niche.


Subject(s)
Bone and Bones/pathology , Checkpoint Kinase 1/genetics , Multiple Myeloma/genetics , Multiple Myeloma/pathology , RNA, Circular/genetics , Animals , Chromosomal Instability/genetics , Heterografts , Humans , Mice , Osteoclasts/metabolism , Osteoclasts/pathology
9.
Cell Death Dis ; 12(2): 206, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627630

ABSTRACT

Steroid 5α-reductase type I (SRD5A1) is a validated oncogene in many sex hormone-related cancers, but its role in multiple myeloma (MM) remains unknown. Based on gene expression profiling (GEP) of sequential MM samples during the disease course, we found that the aberrant expression of SRD5A1 was correlated with progression and poor prognosis in MM patients. In this study, the oncogenic roles of SRD5A1 were validated in human MM cell lines (ARP1 and H929) and the xenograft MM model as well as the 5TMM mouse model. MTT and flow cytometry were used to assess MM cell proliferation, cell cycle, and apoptosis post inducible knockdown SRD5A1 by lentivirus-mediated short-hairpin RNA (shRNA). Transcriptomic sequencing, immunofluorescence, and western blot were used to investigate the effects of SRD5A1 suppression on cell apoptosis and autophagy. Mechanistically, SRD5A1 downregulation simultaneously regulated both the Bcl-2 family protein-mediated apoptosis and the autophagic process via PI3K/Akt/mTOR signaling pathway in MM cells. Meanwhile, the autophagy inhibitor (3-methyladenine) and SRD5A1 inhibitor (Dutasteride) were utilized to evaluate their anti-myeloma effect. Thus, our results demonstrated that SRD5A1 downregulation simultaneously regulated both the apoptosis and the autophagic process in MM cells. The dual autophagy-apoptosis regulatory SRD5A1 may serve as a biomarker and potential target for MM progression and prognosis.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Apoptosis , Autophagy , Membrane Proteins/metabolism , Multiple Myeloma/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , 5-alpha Reductase Inhibitors/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation , Dutasteride/pharmacology , Enzyme Repression , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Signal Transduction
11.
Front Oncol ; 10: 1501, 2020.
Article in English | MEDLINE | ID: mdl-32983992

ABSTRACT

Colorectal cancer (CRC) is a common malignant tumor of the digestive system. Steroid 5α-reductase type I (SRD5A1), as an important part of the steroid metabolism, converts testosterone to dihydrotestosterone and regulates sex hormone levels, which accommodates tumor occurrence or development. However, the underlying molecular mechanism of SRD5A1 in CRC remains unclear. We compared SRD5A1 expression in CRC tissues with normal controls by immunohistochemistry and found that elevated SRD5A1 in CRC was relevant for poor patient prognosis. Furthermore, inducible downregulation of SRD5A1 by small hairpin RNA reduced cell viability, promoted cell cycle arrest, and induced cell apoptosis and cellular senescence of CRC cells, as well as attenuated cell migration ability. In the following experiments, we used dutasteride (an inhibitor of SRD5A1/2) to explore its inhibitory effect on the biological processes of CRC cells, as mentioned earlier. Further mechanism study demonstrated that the repression of SRD5A1 abolished the expression of p65 and vascular endothelial growth factor, suggesting that SRD5A1 might regulate cell viability and migration through nuclear factor-κB/vascular endothelial growth factor signaling pathway. Collectively, these findings implicate SRD5A1 acting as a novel biomarker for CRC diagnosis and prognosis and provide compelling evidence for the future evaluation of dutasteride as a promising candidate for CRC treatment.

12.
Oncol Rep ; 42(4): 1272-1282, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31524246

ABSTRACT

Multiple myeloma (MM) is characterized by the accumulation of monoclonal plasma cells in the bone marrow (BM). The interaction between the BM microenvironment and MM plasma cells can influence cell proliferation, drug resistance and prognosis of the disease. The BM microenvironment (BMME) consists of a cellular and non­cellular compartment. The cellular compartment includes stromal cells, endothelial cells, osteoclasts and osteoblasts, and the non­cellular compartment includes the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors and chemokines. The complex interaction between the BM microenvironment and MM plasma cells influences disease development and prognosis. The present review focuses on the interaction between malignant plasma cells and the BM microenvironment during MM progression. An improved understanding of the interaction between MM plasma cells and their microenvironment will enable the development of novel therapeutic tools that can be used in the treatment of MM, a currently incurable blood cancer.

13.
Am J Transl Res ; 11(7): 4139-4150, 2019.
Article in English | MEDLINE | ID: mdl-31396324

ABSTRACT

Cellular adhesion-mediated drug resistance (CAM-DR) occurs frequently in patients with relapsed or refractory multiple myeloma (MM). Elucidating the mechanism underlying CAM-DR and developing the corresponding treatment may prove to be promising for the clinical management of MM. Bruton's tyrosine kinase (BTK) has been attracting attention in relation to MM progression and drug resistance. BTK was reported to be associated with cell surface CXCR4, a classic cell adhesion molecule and homing factor. However, the exact association between BTK and CAM-DR in MM remains elusive. In this study, we demonstrated that promoting BTK expression induced MM cell adherence to the extracellular matrix (ECM) and stromal cells in vitro and in vivo, and that CAM-DR could be reversed by separating MM cells from ECM or stromal cells. Enhancing BTK expression levels increased CXCR4 expression in MM cells. In addition, BTK may bind directly with CXCR4 and prevent its ubiquitination-induced degradation. Finally, a BTK inhibitor exerted synergistic therapeutic effects with bortezomib in a 5TMM3VT MM mouse model. These findings revealed a novel role of BTK in CAM-DR and may provide a promising approach to MM treatment.

14.
Front Oncol ; 9: 722, 2019.
Article in English | MEDLINE | ID: mdl-31440466

ABSTRACT

MAPKAPK2 (MK2), the direct substrate of p38 MAPK, has been well-acknowledged as an attractive drug target for cancer therapy. However, few studies have assessed the functions of it in multiple myeloma (MM). In the present study, MK2 expression of MM patients was analyzed by gene expression profiling (GEP) and array-based comparative genomic hybridization (aCGH). Several experiments in vitro including MTT assay, Western blot and flow cytometry analysis were performed to identify the function of MK2 in MM. In addition, we conducted mouse survival experiments to explain the effects of MK2 on MM in vivo. mRNA level of MK2 and chromosomal gain of MK2 locus in MM cells significantly increased compared to normal samples. Furthermore, MM patients with high expression of MK2 were associated with a poor outcome. Follow-up studies showed that MK2 exerted a remarkably positive effect on MM cell proliferation and drug-resistance. Further exploration focusing on MK2 inhibitor IV revealed its inhibitory action on MM growth and drug-resistance, as well as improving survival in mouse models. In addition, a combination of MK2 inhibitor IV and the key MM therapeutic agents including bortezomib, doxorubicin, or dexamethasone facilitated curative effects on inhibiting MM cell proliferation. Taken together, our study reveals the clinical relevance of MK2 inhibition in MM and demonstrates that targeting MK2 may afford a new therapeutic approach to MM.

15.
Medicine (Baltimore) ; 97(31): e11315, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30075498

ABSTRACT

Although the association of the psychological problems and androgenetic alopecia (AGA) gained the increasing attention, the psychosocial state in college students with AGA remains unknown. We recruited a total number of 355 college students with AGA from 18 universities in Southern China for interview. The Symptom Checklist-90-R (SCL-90-R) survey was used to assess the psychological state of these students. There were significant differences in somatization, obsessive-compulsive, interpersonal sensitivity, depression, phobic anxiety, psychoticism, and global severity index (GSI) between college students with AGA and the controls. Moreover, regarding the impact of specialty, scores for the interpersonal sensitivity, depression, and phobic anxiety in medical students and art students with AGA were significantly higher than other professions. In addition, obsessive-compulsive and GSI in art students with AGA were significantly higher compared with other professions. These findings suggested that the therapeutic approach for the psychological problems should be considered in the tailored treatment for AGA in the college students.


Subject(s)
Alopecia/psychology , Asian People/psychology , Mental Disorders/epidemiology , Students/psychology , Adolescent , Adult , Alopecia/ethnology , Case-Control Studies , China , Cross-Sectional Studies , Female , Humans , Male , Mental Disorders/diagnosis , Symptom Assessment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...