Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1441555, 2024.
Article in English | MEDLINE | ID: mdl-39315371

ABSTRACT

When genomic prediction is implemented in breeding maize (Zea mays L.), it can accelerate the breeding process and reduce cost to a large extent. In this study, 11 yield-related traits of maize were used to evaluate four genomic prediction methods including rrBLUP, HEBLP|A, RF, and LightGBM. In all the 11 traits, rrBLUP had similar predictive accuracy to HEBLP|A, and so did RF to LightGBM, but rrBLUP and HEBLP|A outperformed RF and LightGBM in 8 traits. Furthermore, genomic prediction-based heterotic pattern of yield was established based on 64620 crosses of maize in Southwest China, and the result showed that one of the parent lines of the top 5% crosses came from temp-tropic or tropic germplasm, which is highly consistent with the actual situation in breeding, and that heterotic pattern (Reid+ × Suwan+) will be a major heterotic pattern of Southwest China in the future.

2.
Plants (Basel) ; 12(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37687398

ABSTRACT

The protein phosphatase 2C (PP2C) constitutes a large gene family that plays crucial roles in regulating stress responses and plant development. A recent study has shown the involvement of an AtPP2C family member in long-distance nitrogen signaling in Arabidopsis. However, it remains unclear whether maize adopts a similar mechanism. In this study, we conducted a genome-wide survey and expression analysis of the PP2C family in maize. We identified 103 ZmPP2C genes distributed across 10 chromosomes, which were further classified into 11 subgroups based on an evolutionary tree. Notably, cis-acting element analysis revealed the presence of abundant hormone and stress-related, as well as nitrogen-related, cis-elements in the promoter regions of ZmPP2Cs. Expression analysis demonstrated the distinct expression patterns of nine genes under two nitrogen treatments. Notably, the expression of ZmPP2C54 and ZmPP2C85 in the roots was found to be regulated by long-distance signals from the shoots. These findings provide valuable insights into understanding the roles of ZmPP2Cs in long-distance nitrogen signaling in maize.

3.
Carbohydr Polym ; 264: 118040, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33910723

ABSTRACT

Citrus pectin can serve as a naturally digestion-resistant emulsifier, although how it achieves this effect is still unknown. In this study, the upper digestion fate of an emulsion stabilized by different concentrations of citrus pectin, and changes in its interfacial properties during digestion, were investigated. Emulsions stabilized by high-concentration citrus pectin (3 %) were relatively stable during digestion and had a lower free fatty acid (FFA) release rate than emulsions stabilized by low-concentration citrus pectin (1 %). At the low concentration, the citrus pectin interface had a thin absorbing layer and was largely replaced by bile salts, while at high concentration the citrus pectin interface possessed a uniform and thick adsorbing layer that resisted the replacement of bile salts and enabled lipase adsorption. This study has improved our understanding of the digestion of emulsion from the interface and will be useful for designing emulsion-based functional foods that can achieve targeted release.


Subject(s)
Citrus/chemistry , Digestion , Emulsifying Agents/chemistry , Pectins/chemistry , Upper Gastrointestinal Tract/metabolism , Adsorption , Bile Acids and Salts/metabolism , Emulsifying Agents/metabolism , Emulsions/chemistry , Fatty Acids, Nonesterified/metabolism , Humans , Lipase/metabolism , Lipolysis , Microscopy, Confocal/methods , Microscopy, Electron, Transmission/methods , Pectins/metabolism , Starch/metabolism , Whey Proteins/metabolism
4.
J Agric Food Chem ; 69(17): 5226-5237, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33890787

ABSTRACT

Citrus flavanones have the potential to alleviate atherosclerosis. The metabolism and anti-atherosclerosis signaling pathways of four citrus flavanones (naringin, naringenin, hesperidin, and hesperetin) were compared in ApoE-/- mice. Naringin had the most potent anti-atherogenic effect, followed by hesperidin, naringenin, and hesperetin with reductions of 55.92, 34.98, 42.87, and 24.70% in the atherosclerotic plaque rate compared with the control, respectively. Oral naringin mainly existed in the intestine due to the high water solubility of 7-O-nohesperidoside and alleviated atherosclerosis mainly by enhancing bile acid synthesis in the gut microbiota-FXR/FGF15-CYP7A1 pathway. The other three flavanones mainly alleviated atherosclerosis in the liver after absorption from the intestine. Hesperidin upregulates ABCA1 by 1.8-fold to enhance cholesterol reverse transport, while the aglycones naringenin and hesperetin inhibited cholesterol synthesis via downregulating HMGCR by 2.4- and 2.3-fold, respectively. Hesperetin was more resistant to absorption than naringenin due to the existence of a 4'-methoxyl group and had relatively weak effects on atherosclerosis. The alleviation of atherosclerosis by the four citrus flavanones was tightly related to differences in their in vivo metabolism and signaling pathways. This provides new insights into the anti-atherosclerotic mechanisms of food functional flavanones and guidance for the design of novel, efficient strategies for preventing atherosclerosis based on citrus flavanones.


Subject(s)
Atherosclerosis , Citrus , Flavanones , Hesperidin , Animals , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Intestinal Absorption , Metabolic Networks and Pathways , Mice , Mice, Knockout, ApoE , Signal Transduction
5.
J Agric Food Chem ; 68(45): 12651-12660, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33107729

ABSTRACT

Naringin, a major flavonoid in citrus, has potential for preventing atherosclerosis. The presence in the colon of a large amount of naringin after oral intake might affect the gut microbiota. We investigated the role of gut microbiota remodeling in the alleviation of atherosclerosis by naringin. Naringin significantly alleviated atherosclerosis and lowered the serum and liver cholesterol levels by 24.04 and 28.37% in ApoE-/- mice fed with a high-fat diet. Nontarget metabolomics showed that naringin modulated the hepatic levels of cholesterol derivatives and bile acids. Naringin increased the excretion of bile acids and neutral sterols by 1.6- and 4.3-fold, respectively. The main potential pathway by which naringin alleviated atherosclerosis was the gut microbiota-liver-cholesterol axis. Naringin modulated the abundances of bile salt hydrolase- and 7α-dehydroxylase-producing bacteria, promoting bile acid synthesis from cholesterol by upregulating CYP7A1 via suppression of the FXR/FGF15 pathway. In addition, naringin facilitated reverse cholesterol transport by downregulating PCSK9/IDOL. The results provide insight into the atherosclerosis-alleviation mechanisms of citrus flavonoids and a scientific basis for the development of functional foods containing citrus flavonoids.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Cholesterol/metabolism , Flavanones/administration & dosage , Gastrointestinal Microbiome/drug effects , Animals , Apolipoproteins E/deficiency , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/microbiology , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Humans , Liver/drug effects , Liver/metabolism , Mice , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL