Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(28): 18841-18847, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975938

ABSTRACT

An asymmetric intramolecular spiro-amination to high steric hindering α-C-H bond of 1,3-dicarbonyl via nitrene transfer using inactive aryl azides has been carried out by developing a novel Cp*Ir(III)-SPDO (spiro-pyrrolidine oxazoline) catalyst, thereby enabling the first successful construction of structurally rigid spiro-quaternary indolinone cores with moderate to high yields and excellent enantioselectivities. DFT computations support the presence of double bridging H-F bonds between [SbF6]- and both the ligand and substrate, which favors the plane-differentiation of the enol π-bond for nitrenoid attacking. These findings open up numerous opportunities for the development of new asymmetric nitrene transfer systems.

2.
Chem Sci ; 15(23): 8880-8887, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38873056

ABSTRACT

An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.

3.
Chem Sci ; 15(21): 7848-7869, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38817580

ABSTRACT

In view of the advantages of low cost, environmental sustainability, and high safety, aqueous Zn-ion batteries (AZIBs) are widely expected to hold significant promise and increasingly infiltrate various applications in the near future. The development of AZIBs closely relates to the properties of cathode materials, which depend on their structures and corresponding dynamic evolution processes. Synchrotron radiation light sources, with their rich advanced experimental methods, serve as a comprehensive characterization platform capable of elucidating the intricate microstructure of cathode materials for AZIBs. In this review, we initially examine available cathode materials and discuss effective strategies for structural regulation to boost the storage capability of Zn2+. We then explore the synchrotron radiation techniques for investigating the microstructure of the designed materials, particularly through in situ synchrotron radiation techniques that can track the dynamic evolution process of the structures. Finally, the summary and future prospects for the further development of cathode materials of AZIBs and advanced synchrotron radiation techniques are discussed.

4.
J Am Chem Soc ; 146(22): 15167-15175, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38717376

ABSTRACT

As one of the potential catalysts, disordered solid solution alloys can offer a wealth of catalytic sites. However, accurately evaluating their activity localization structure and overall activity from each individual site remains a formidable challenge. Herein, an approach based on density functional theory and machine learning was used to obtain a large number of sites of the Pt-Ru alloy as the model multisite catalyst for the hydrogen evolution reaction. Subsequently, a series of statistical approaches were employed to unveil the relationship between the geometric structure and overall activity. Based on the radial frequency distribution of metal elements and the distribution of ΔGH, we have identified the surface and subsurface sites occupied by Pt and Ru, respectively, as the most active sites. Particularly, the concept of equivalent site ratio predicts that the overall activity is highest when the Ru content is 20-30%. Furthermore, a series of Pt-Ru alloys were synthesized to validate the proposed theory. This provides crucial insights into understanding the origin of catalytic activity in alloys and thus will better guide the rational development of targeted multisite catalysts.

5.
Small ; : e2400673, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700057

ABSTRACT

Parasitic side reactions and dendrites formation hinder the application of aqueous zinc ion batteries due to inferior cycling life and low reversibility. Against this background, N-methyl formamide (NMF), a multi-function electrolyte additive is applied to enhance the electrochemical performance. Studied via advanced synchrotron radiation spectroscopy and DFT calculations, the NMF additive simultaneously modifies the Zn2+ solvation structure and ensures uniform zinc deposition, thus suppressing both parasitic side reactions and dendrite formation. More importantly, an ultralong cycling life of 3115 h in the Zn||Zn symmetric cell at a current density of 0.5 mA cm-2 is achieved with the NMF additive. Practically, the Zn||PANI full cell utilizing NMF electrolyte shows better rate and cycling performance compared to the pristine ZnSO4 aqueous electrolyte. This work provides useful insights for the development of high-performance aqueous metal batteries.

6.
Nat Commun ; 15(1): 4591, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816373

ABSTRACT

Bridged chiral biaryls are axially chiral compounds with a medium-sized ring connecting the two arenes. Compared with plentiful methods for the enantioselective synthesis of biaryl compounds, synthetic approaches for this subclass of bridged atropisomers are limited. Here we show an atroposelective synthesis of 1,3-diaxial bridged eight-membered terphenyl atropisomers through an Co/SPDO (spirocyclic pyrrolidine oxazoline)-catalyzed aerobic oxidative coupling/desymmetrization reaction of prochiral phenols. This catalytic desymmetric process is enabled by combination of an earth-abundant Co(OAc)2 and a unique SPDO ligand in the presence of DABCO (1,4-diaza[2.2.2]bicyclooctane). An array of diaxial bridged terphenyls embedded in an azocane can be accessed in high yields (up to 99%) with excellent enantio- (>99% ee) and diastereoselectivities (>20:1 dr).

7.
JACS Au ; 4(3): 930-939, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559714

ABSTRACT

The catalytic performance is determined by the electronic structure near the Fermi level. This study presents an effective and simple screening descriptor, i.e., the one-dimensional density of states (1D-DOS) fingerprint similarity, to identify potential catalysts for the sulfur reduction reaction (SRR) in lithium-sulfur batteries. The Δ1D-DOS in relation to the benchmark W2CS2 was calculated. This method effectively distinguishes and identifies 30 potential candidates for the SRR from 420 types of MXenes. Further analysis of the Gibbs free energy profiles reveals that MXene candidates exhibit promising thermodynamic properties for SRR, with the protocol achieving an accuracy rate exceeding 93%. Based on the crystal orbital Hamilton population (COHP) and differential charge analysis, it is confirmed that the Δ1D-DOS could effectively differentiate the interaction between MXenes and lithium polysulfide (LiPS) intermediates. This study underscores the importance of the electronic fingerprint in catalytic performance and thus may pave a new way for future high-throughput material screening for energy storage applications.

8.
Small ; : e2400099, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507728

ABSTRACT

Profiting from the unique atomic laminated structure, metallic conductivity, and superior mechanical properties, transition metal carbides and nitrides named MAX phases have shown great potential as anodes in lithium-ion batteries. However, the complexity of MAX configurations poses a challenge. To accelerate such application, a minus integrated crystal orbital Hamilton populations descriptor is innovatively proposed to rapidly evaluate the lithium storage potential of various MAX, along with density functional theory computations. It confirms that surface A-element atoms bound to lithium ions have odds of escaping from MAX. Interestingly, the activated A-element atoms enhance the reversible uptake of lithium ions by MAX anodes through an efficient alloying reaction. As an experimental verification, the charge compensation and SnxLiy phase evolution of designed Zr2SnC MAX with optimized structure is visualized via in situ synchrotron radiation XRD and XAFS technique, which further clarifies the theoretically expected intercalation/alloying hybrid storage mechanism. Notably, Zr2SnC electrodes achieve remarkably 219.8% negative capacity attenuation over 3200 cycles at 1 A g-1. In principle, this work provides a reference for the design and development of advanced MAX electrodes, which is essential to explore diversified applications of the MAX family in specific energy fields.

9.
Small ; 20(30): e2310163, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38389176

ABSTRACT

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

10.
Huan Jing Ke Xue ; 45(1): 439-449, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216493

ABSTRACT

Organic materials containing humic acids (HAs) play important roles in regulating the bioavailability of cadmium (Cd) in soils and thus its accumulation in crops. The effects of the two active components of HAs, humic acid (HA) and fulvic acid (FA), in organic materials and their different ratios (HA/FA) on Cd uptake and accumulation in rice were investigated using a field plot experiment, and their relationships with the Cd fractions and availability in paddy soil as influenced by the use of these organic materials were analyzed in combination with the fractionation method of chemical continuous extraction. The results showed that the effects of HAs on Cd availability in soil and Cd accumulation in rice grains were controlled by the ratios of the active components in the organic materials. The treatments with an HA/FA ratio ≥ 4/6 had a passivating effect on soil Cd, resulting in a significant reduction in Cd availability. Compared with that in the control without the application of HAs (CK), rice grain Cd concentration was reduced by 15.2%-33.3%, whereas those with an HA/FA ratio ≤ 2/8 activated Cd in soil, and the available Cd content was significantly increased. Compared with that in CK, rice grain Cd concentration was increased by 24.2%-42.4%. The ratios of HA/FA in HAs affected the morphological transformation of soil Cd. Compared with the CK treatment, the treatments with ratios of HA/FA ≥ 4/6 promoted the transformation of soil Cd from the exchangeable form (EX-Cd) with high activity to the carbonate bound form (CA-Cd) and Fe and Mn oxide-bound forms (FM-Cd) with low activity, whereas those with ratios of HA/FA ≤ 2/8 showed the opposite effects. The effects of HA and FA on soil pH and available sulfur concentration differed. Soil pH had a significant positive correlation with HA addition but a negative correlation with FA addition, and soil available sulfur content had a significant positive correlation with FA addition at the rice tillering stage. Therefore, to ensure the quality and safety of rice, organic materials with an HA/FA ratio ≥ 4/6 should be selected. The results provided a scientific basis for the directed utilization of organic materials containing HAs.


Subject(s)
Oryza , Soil Pollutants , Soil/chemistry , Cadmium/analysis , Oryza/chemistry , Soil Pollutants/analysis , Humic Substances , Edible Grain/chemistry , Sulfur/metabolism
11.
Small Methods ; 8(7): e2301115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38145365

ABSTRACT

Aqueous zinc ion batteries (AZIBs) show great potential in large-scale energy storage systems. However, the inferior cycling life due to water-induced parasitic reactions and uncontrollable dendrites growth impede their application. Electrolyte optimization via the use of additives is a promising strategy to enhance the stability of AZIBs. Nevertheless, the mechanism of optimal multifunctional additive strategy requires further exploration. Herein, sodium dodecyl benzene sulfonate (SDBS) is proposed as a dual-functional additive in ZnSO4 electrolyte. Benefiting from the additive, both side reactions and zinc dendrites growth are significantly inhibited. Further, a synchrotron radiational spectroscopic study is employed to investigate SDB- adjusted electric double layer (EDL) near the Zn surface and the optimized solvation sheath of Zn2+. First-principles calculations verify the firm adsorption of SDB-, and restriction of random diffusion of Zn2+ on the Zn surface. In particular, the SDBS additive endows Zn||Zn symmetric cells with a 1035 h ultra-stable plating/stripping at 0.2 mA cm-2. This work not only provides a promising design strategy by dual-functional electrolyte additives for high stable AZIBs, but also exhibits the prospect of synchrotron radiation spectroscopy analysis on surface EDL and Zn2+ solvation shell optimization.

12.
Huan Jing Ke Xue ; 44(10): 5704-5717, 2023 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-37827786

ABSTRACT

Arsenic (As) and cadmium (Cd) are the most common toxic and harmful heavy metal elements in paddy soils and are easily transferred from the soil to grains. At present, As and Cd and their co-contamination in paddy soils in China are widespread, posing a serious threat to food security and human health. As and Cd have opposite environmental behaviors in soil, and the simultaneous remediation of co-contamination with As and Cd is a current technical difficulty for safe rice production. This review focuses on several practical techniques for simultaneous mitigation of As and Cd uptake and transport in rice in recent years, including water management, passivation, drenching techniques, electrokinetic remediation, phytoremediation, selection of low-accumulation rice varieties, and foliar spraying application. The treatment effects, mechanisms of action, and constraints of various technologies are summarized and analyzed; the development direction of the main barrier control technologies is proposed and the importance of constructing a comprehensive technology model with high regional adaptability is emphasized to provide a reference for the remediation of co-contamination with As and Cd in paddy and safe rice production.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Humans , Cadmium/analysis , Arsenic/analysis , Soil , Soil Pollutants/analysis , Technology
13.
Org Biomol Chem ; 21(35): 7173-7179, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37609939

ABSTRACT

An efficient squaramide-catalyzed asymmetric allylic alkylation of 4-aminopyrazolones with various MBH carbonates via different pathways has been described. This method provides access to a series of pyrazolone derivatives bearing a nitrogen-containing quaternary stereocenter in high yields with excellent enantioselectivities and regioselectivities under mild conditions. In addition, we utilized the target products to construct a range of bi-heterocyclic skeletons through [3 + 2] cycloadditions. These novel hybrid heterocycles would be promising candidates for drug-discovery programs and chemical biology.

14.
Adv Mater ; 35(36): e2301399, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37381914

ABSTRACT

Low-dielectric-constant materials such as silicon dioxide serving as interconnect insulators in current integrated circuit face a great challenge due to their relatively high dielectric constant of ≈4, twice that of the recommended value by the International Roadmap for Devices and Systems, causing severe parasitic capacitance and associated response delay. Here, novel atomic layers of amorphous carbon nitride (a-CN) are prepared via a topological conversion of MXene-Ti3 CNTx under bromine vapor. Remarkably, the assembled a-CN film exhibits an ultralow dielectric constant of 1.69 at 100 kHz, much lower than the previously reported dielectric materials such as amorphous carbon (2.2) and fluorinated-doped SiO2 (3.6), ascribed to the low density of 0.55 g cm-3 and high sp3 C level of 35.7%. Moreover, the a-CN film has a breakdown strength of 5.6 MV cm-1 , showing great potential in integrated circuit application.

15.
Angew Chem Int Ed Engl ; 62(33): e202308082, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37358875

ABSTRACT

Synthesis of highly active and durable oxygen evolution reaction (OER) catalysts applied in acidic water electrolysis remains a grand challenge. Here, we construct a type of high-loading iridium single atom catalysts with tunable d-band holes character (h-HL-Ir SACs, ∼17.2 wt % Ir) realized in the early OER operation stages. The in situ X-ray absorption spectroscopy reveals that the quantity of the d-band holes of Ir active sites can be fast increased by 0.56 unit from the open circuit to a low working potential of 1.35 V. More remarkably, in situ synchrotron infrared and Raman spectroscopies demonstrate the quick accumulation of *OOH and *OH intermediates over holes-modulated Ir sites in the early reaction voltages, achieving a rapid OER kinetics. As a result, this well-designed h-HL-Ir SACs exhibits superior performance for acidic OER with overpotentials of 216 mV @10 mA cm-2 and 259 mV @100 mA cm-2 , corresponding to a small Tafel slope of 43 mV dec-1 . The activity of catalyst shows no evident attenuation after 60 h operation in acidic environment. This work provides some useful hints for the design of superior acidic OER catalysts.

16.
Huan Jing Ke Xue ; 44(5): 2646-2660, 2023 May 08.
Article in Chinese | MEDLINE | ID: mdl-37177938

ABSTRACT

Toxic As(Ⅲ) and Cd(Ⅱ) ions in water can be transferred and enriched into human bodies through the food chain, causing serious health damage at excessive levels. In this study, fulvic acid (FA) was selected as the modifier of iron-manganese-nickel layered double hydroxide (FeMnNi-LDH), and a stable layered composite (FA@FeMnNi-LDH) was prepared using the co-precipitation method, which could adsorb As(Ⅲ) anions and Cd(Ⅱ) cations simultaneously, especially with the higher adsorption capacity of the cation Cd(Ⅱ). Its structure was characterized by XRD, TEM, FT-IR, and XPS, and the adsorption capacity and mechanisms of As(Ⅲ) and Cd(Ⅱ) in water by the composite were also investigated. The results showed that with typical characteristic peaks of layered double hydroxides, the synthesized composite possessed a stable structure, maximum FA loading capacity, and optimal adsorption performance. The adsorption kinetics of As(Ⅲ) and Cd(Ⅱ) conformed to the pseudo-second-order kinetic model, and the adsorption isotherms well-followed the Langmuir model, with the maximum adsorption capacity at 25℃ being 249.60 mg·g-1 for As(Ⅲ) and 156.50 mg·g-1 for Cd(Ⅱ), respectively. The composite exhibited a good adsorption performance on As(Ⅲ) and Cd(Ⅱ) in the range of pH 2-7 and pH 4-7, respectively. The competitive adsorption effect of co-existed anions on As(Ⅲ) showed a sequence of PO43->CO32->NO3-, and that of co-existed cations on Cd(Ⅱ) was Pb2+>Cu2+>K+. The adsorption capacity of As(Ⅲ) and Cd(Ⅱ) decreased with the increase in the concentration of competing ions. The main adsorption mechanism for As(Ⅲ) was ion-exchange occurring in the interlayers of LDH, and that for Cd(Ⅱ) was coordination complexation occurring with the loaded FA, respectively. In conclusion, the prepared FA@FeMnNi-LDH composite material posed a good application prospect for adsorption removal of As(Ⅲ) and Cd(Ⅱ) in water and their toxicity control.

17.
J Am Chem Soc ; 145(19): 10681-10690, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37129450

ABSTRACT

Lewis acidic molten salt method is a promising synthesis strategy for achieving MXenes with controllable surface termination from numerous MAX materials. Understanding the phase evolution chemistry during etching and post-processing is highly desirable but remains a key challenge due to the lack of suitable in-situ characterizations and the complexity of the reaction process. Herein, we introduce an operando synchrotron radiation X-ray diffraction (SRXRD) technique to unveil the phase evolution process of Nb2GaC MAX under a molten-salt ambient, proposing a controllable synthesis to achieve optimal etching through precise temperature and time adjustment. Subsequently, the phase structure of Nb2CTx MXenes is successfully tailored from hexagonal to amorphous by time-dependent persulfate oxidation. The resulting amorphous Nb2CTx with a well-patterned morphology and numerous chloride terminations exhibits highly improved specific capacity, rate capability, and long cycling for Li+ storage with a Cl-containing surface protective film. Addressing the time-related phase evolution during the entire molten salt strategy provides new insights into achieving higher efficiency and controllability in preparing MXenes and shows great potential in high-performance energy storage systems based on MXenes.

18.
RSC Adv ; 13(17): 11569-11576, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37063727

ABSTRACT

The development of efficient non-noble metal catalysts for the dehydrogenation of hydrogen (H2) storage materials is highly desirable to enable the global production and storage of H2 energy. In this study, Cu x -(CoO)1-x /TiO2 catalysts with a Cu-CoO interface supported on TiO2 are shown to exhibit high catalytic efficiency for ammonia borane (NH3BH3) hydrolysis to generate H2. The best catalytic activity was observed for a catalyst with a Cu : Co molar ratio of 1 : 1. The highest dehydrogenation turnover frequency (TOF) of 104.0 molH2 molmetal -1 min-1 was observed in 0.2 M NaOH at room temperature, surpassing most of the TOFs reported for non-noble catalysts for NH3BH3 hydrolysis. Detailed characterisation of the catalysts revealed electronic interactions at the Cu-CoO heterostructured interface of the catalysts. This interface provides bifunctional synergetic sites for H2 generation, where activation and adsorption of NH3BH3 and H2O are accelerated on the surface of Cu and CoO, respectively. This study details an effective method of rationally designing non-noble metal catalysts for H2 generation via a metal and transition-metal oxide interface.

19.
Sci Total Environ ; 881: 163392, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044334

ABSTRACT

The accumulation of Cd in soil-rice systems at a large region is often extremely complicated due to environmental heterogeneity and the interactions of multiple influencing factors. However, the interactive effects and quantification of the contributions of influencing factors on Cd accumulation in large regions remain unclear. In this study, conditional inference trees and random forest analysis were used to identify the interactions of various factors (soil properties, topography and demographic-economic), and quantify their contributions to Cd accumulation in soil-rice systems of Sichuan-Chongqing region, China. The results showed that Cd content in the soil was the most significant influencing factor on Cd accumulation in soil-rice systems, especially bioavailable Cd in soil contributed to 35.73 % and 54.78 % for soil total Cd (Cdsoil) and brown rice Cd (Cdrice), respectively. Population density (PD) and elevation contributed 31.16 % and 27.40 % to Cdsoil content, respectively, and their interaction promoted the increase in Cdsoil content. Moreover, PD played a leading role in Cdsoil content when the elevation exceeded 324 m. The relative importances of slope and elevation for Cdrice content were 16.81 % and 8.49 %, respectively, and their interaction facilitated the increment of Cdrice content. As soil pH, gross domestic product (GDP) and slope decreased, the interaction of soil pH with GDP led to the increase of bioavailability factor (BAF), and that with slope enhanced the bioaccumulation factor (BCF). In addition, soil pH, PD and elevation were of considerable importance for the migration and transformation of Cd, with contributions of 22.11 %, 12.90 % and 12.52 % to BAF, and 5.05 %, 5.62 % and 5.50 % to BCF, respectively. This study is hopeful to provide a scientific insight into the prevention and control of Cd contamination in soil-rice systems at a large region.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Oryza/chemistry , Soil Pollutants/analysis , China
20.
Proc Natl Acad Sci U S A ; 120(13): e2217208120, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36940337

ABSTRACT

Intercalation-type layered oxides have been widely explored as cathode materials for aqueous zinc-ion batteries (ZIBs). Although high-rate capability has been achieved based on the pillar effect of various intercalants for widening interlayer space, an in-depth understanding of atomic orbital variations induced by intercalants is still unknown. Herein, we design an NH4+-intercalated vanadium oxide (NH4+-V2O5) for high-rate ZIBs, together with deeply investigating the role of the intercalant in terms of atomic orbital. Besides extended layer spacing, our X-ray spectroscopies reveal that the insertion of NH4+ could promote electron transition to 3dxy state of V t2g orbital in V2O5, which significantly accelerates the electron transfer and Zn-ion migration, further verified by DFT calculations. As results, the NH4+-V2O5 electrode delivers a high capacity of 430.0 mA h g-1 at 0.1 A g-1, especially excellent rate capability (101.0 mA h g-1 at 200 C), enabling fast charging within 18 s. Moreover, the reversible V t2g orbital and lattice space variation during cycling are found via ex-situ soft X-ray absorption spectrum and in-situ synchrotron radiation X-ray diffraction, respectively. This work provides an insight at orbital level in advanced cathode materials.

SELECTION OF CITATIONS
SEARCH DETAIL