Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 338: 122236, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763717

ABSTRACT

Avicennia marina (Forssk.) Vierh. is a highly salt-tolerant mangrove, and its fruit has been traditionally used for treating constipation and dysentery. In this study, a pectin (AMFPs-0-1) was extracted and isolated from this fruit for the first time, its structure was analyzed, and the effects on the human gut microbiota were investigated. The results indicated that AMFPs-0-1 with a molecular weight of 798 kDa had a backbone consisting of alternating →2)-α-L-Rhap-(1→ and →4)-α-D-GalpA-(1→ residues and side chains composed of →3-α-L-Araf-(1→-linked arabinan with a terminal ß-L-Araf, →5-α-L-Araf-(1→-linked arabinan, and →4)-ß-D-Galp-(1→-linked galactan that linked to the C-4 positions of all α-L-Rhap residues in the backbone. It belongs to a type I rhamnogalacturonan (RG-I) pectin but has no arabinogalactosyl chains. AMFPs-0-1 could be consumed by human gut microbiota and increase the abundance of some beneficial bacteria, such as Bifidobacterium, Mitsuokella, and Megasphaera, which could help fight digestive disorders. These findings provide a structural basis for the potential application of A. marina fruit RG-I pectic polysaccharides in improving human intestinal health.


Subject(s)
Avicennia , Fermentation , Fruit , Gastrointestinal Microbiome , Pectins , Prebiotics , Pectins/chemistry , Fruit/chemistry , Avicennia/chemistry , Avicennia/microbiology , Humans , Gastrointestinal Microbiome/drug effects , Molecular Weight
2.
Mar Drugs ; 21(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36976197

ABSTRACT

Echinoderms have been attracting increasing attention for their polysaccharides, with unique chemical structure and enormous potential for preparing drugs to treat diseases. In this study, a glucan (TPG) was obtained from the brittle star Trichaster palmiferus. Its structure was elucidated by physicochemical analysis and by analyzing its low-molecular-weight products as degraded by mild acid hydrolysis. The TPG sulfate (TPGS) was prepared, and its anticoagulant activity was investigated for potential development of anticoagulants. Results showed that TPG consisted of a consecutive α1,4-linked D-glucopyranose (D-Glcp) backbone together with a α1,4-linked D-Glcp disaccharide side chain linked through C-1 to C-6 of the main chain. The TPGS was successfully prepared with a degree of sulfation of 1.57. Anticoagulant activity results showed that TPGS significantly prolonged activated partial thromboplastin time, thrombin time, and prothrombin time. Furthermore, TPGS obviously inhibited intrinsic tenase, with an EC50 value of 77.15 ng/mL, which was comparable with that of low-molecular-weight heparin (LMWH) (69.82 ng/mL). TPGS showed no AT-dependent anti-FIIa and anti-FXa activities. These results suggest that the sulfate group and sulfated disaccharide side chains play a crucial role in the anticoagulant activity of TPGS. These findings may provide some information for the development and utilization of brittle star resources.


Subject(s)
Anticoagulants , Glucans , Animals , Anticoagulants/pharmacology , Anticoagulants/chemistry , Sulfates/chemistry , Heparin, Low-Molecular-Weight , Echinodermata , Polysaccharides/pharmacology , Partial Thromboplastin Time
3.
Molecules ; 27(9)2022 May 08.
Article in English | MEDLINE | ID: mdl-35566376

ABSTRACT

Laminaria japonica is widely consumed as a key food and medicine. Polysaccharides are one of the most plentiful constituents of this marine plant. In this study, several polysaccharide fractions with different charge numbers were obtained. Their physicochemical properties and anticoagulant activities were determined by chemical and instrumental methods. The chemical analysis showed that Laminaria japonica polysaccharides (LJPs) and the purified fractions LJP0, LJP04, LJP06, and LJP08 mainly consisted of mannose, glucuronic acid, galactose, and fucose in different mole ratios. LJP04 and LJP06 also contained minor amounts of xylose. The polysaccharide fractions eluted by higher concentration of NaCl solutions showed higher contents of uronic acid and sulfate group. Biological activity assays showed that LJPs LJP06 and LJP08 could obviously prolong the activated partial thromboplastin time (APTT), indicating that they had strong anticoagulant activity. Furthermore, we found that LJP06 exerted this activity by inhibiting intrinsic factor Xase with higher selectivity than other fractions, which may have negligible bleeding risk. The sulfate group may play an important role in the anticoagulant activity. In addition, the carboxyl group and surface morphology of these fractions may affect their anticoagulant activities. The results provide information for applications of L. japonica polysaccharides, especially LJP06 as anticoagulants in functional foods and therapeutic agents.


Subject(s)
Laminaria , Anticoagulants/chemistry , Anticoagulants/pharmacology , Laminaria/chemistry , Partial Thromboplastin Time , Polysaccharides/chemistry , Polysaccharides/pharmacology , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...