Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 17(8): 2130-2141, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35822391

ABSTRACT

The compound FR901379, a sulfated echinocandin produced by the filamentous fungus Coleophoma empetri F-11899, is an important intermediate for the synthesis of the antifungal drug micafungin. In this study, we established an efficient clustered regularly interspaced short palindromic repeats/Cas9-based gene editing tool for the industrial production strain C. empetri SIPI1284. With this method, the efficiency of gene mutagenesis in the target locus is up to 84%, which enables the rapid gene disruption for the analysis of FR901379 biosynthetic genes. Next, we verified the putative functional genes of the FR901379 biosynthetic gene cluster via gene disruption and gene complementation in vivo. These core functional genes included the nonribosomal peptide synthetase gene (CEnrps), the fatty-acyl-AMP ligase gene (CEligase) responsible for the formation of the activated form of palmitic acid and its transfer to CEnrps, four nonheme mononuclear iron oxygenase genes (CEoxy1, CEoxy2, CEoxy3, and CEoxy4) responsible for the synthesis of nonproteinogenic amino acids, l-homotyrosine biosynthesis genes (CEhtyA-D), two cytochrome P450 enzyme genes (CEp450-1 and CEp450-2), and a transcription regulator gene (CEhyp). In addition, by screening the whole genome, we identified two unknown genes (CEp450-3 and CEsul) responsible for the sulfonyloxy group of FR901379, which were separated from the core FR901379 biosynthetic cluster. Furthermore, during gene disruptions in the research, we obtained a series of FR901379 analogues and elucidated the relationship between the groups and antifungal activities.


Subject(s)
Antifungal Agents , CRISPR-Cas Systems , Antifungal Agents/chemistry , Ascomycota , CRISPR-Cas Systems/genetics , Echinocandins/chemistry , Genomics , Peptides, Cyclic , Tyrosine/analogs & derivatives
2.
ACS Synth Biol ; 9(8): 1968-1977, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32786921

ABSTRACT

Glarea lozoyensis is an important industrial fungus that produces the pneumocandin B0, which is used for the synthesis of antifungal drug caspofungin. However, because of the limitations and complications of traditional genetic tools, G. lozoyensis strain engineering has been hindered. In this study, we established an efficient CRISPR/Cas9-based gene editing tool in G. lozoyensis SIPI1208. With this method, gene mutagenesis efficiency in the target locus can be up to 80%, which enables the rapid gene knockout. According to the reports, GloF and Ap-HtyE, proline hydroxylases involved in pneumocandin and Echinocandin B biosynthesis, respectively, can catalyze the proline to generate different ratios of trans-3-hydroxy-l-proline to trans-4-hydroxy-l-proline. Heterologous expression of Ap-HtyE in G. lozoyensis decreased the ratio of pneumocandin C0 to (pneumocandin B0 + pneumocandin C0) from 33.5% to 11% without the addition of proline to the fermentation medium. Furthermore, the gloF was replaced by ap-htyE to study the production of pneumocandin C0. However, the gene replacement has been hampered by traditional gene tools since gloF and gloG, two contiguous genes indispensable in the biosynthesis of pneumocandins, are cotranscribed into one mRNA. With the CRISPR/Cas9 strategy, ap-htyE was knocked in and successfully replaced gloF, and results showed that the knock-in strain retained the ability to produce pneumocandin B0, but the production of pneumocandin C0 was abolished. Thus, this strain displayed a competitive advantage in the industrial production of pneumocandin B0. In summary, this study showed that the CRISPR/Cas9-based gene editing tool is efficient for manipulating genes in G. lozoyensis.


Subject(s)
Ascomycota/genetics , CRISPR-Cas Systems/genetics , Fungal Proteins/genetics , Gene Editing/methods , Echinocandins/biosynthesis , Echinocandins/chemistry , Fungal Proteins/metabolism , Mutagenesis, Site-Directed , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , RNA, Guide, Kinetoplastida/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...