Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Toxicology ; 505: 153836, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768702

ABSTRACT

Caramel color is a widely used food pigment, and 2-Acetyl-4-tetrahydroxybutylimidazole (THI) is a by-products of Class III caramel color. Some studies have shown that THI can reduce the number of peripheral blood lymphocytes. However, the comprehensive mechanism of THI immunotoxicity requires further study. In this study, the effects of THI on lymphocyte count, humoral immunity, cellular immunity and nonspecific immunity were determined and the effect of the nutritional status of VB6 on THI immunotoxicity was evaluated. Female BALB/c mice were divided into 3 groups and fed chow containing different doses of VB6: VB6-normal (6 mg/kg VB6), VB6-deprived (0.5 mg/kg VB6) or VB6-enhanced (12 mg/kg VB6) feed. Each group was further divided into 4 subgroups and treated with THI (0.5, 2.5 or 12.5 mg/kg bw) or the solvent control by gavage for 30 days. The thymic cortical thickness was measured with ViewPoint; the proportions of major immune cells and T cells in peripheral blood and tissues were detected via flow cytometry; the transformation and proliferation abilities of T and B cells were detected via T and B lymphocyte proliferation assays; NK cell activity was assessed via lactate dehydrogenase assays; humoral immune function was assessed via plaque-forming cell assays; and the immune function of T lymphocytes was assessed via delayed type hypersensitivity assays. The results showed that compared with those in the corresponding control group, the white blood cell count and lymphocyte count decreased significantly in all the VB6-deprived groups, in the 2.5 and 12.5 mg/kg VB6 groups, and in the 12.5 mg/kg VB6-enhanced group. With increasing THI dose, the thymic cortical layer became thinner. In the thymus, THI increased the proportions of CD3+ T cells and mature CD8+ T cells and decreased the proportions of immature double-positive, double-negative T cells and CD69-expressing lymphocytes. The proportions of naïve T cells and Tcm (central memory T) cells related to homing decreased. The proportion of mature T cells in the spleen decreased significantly. The proliferation of T cells stimulated by ConA decreased after THI exposure. VB6-deficient mice were more sensitive to THI immunotoxicity, and supplementation with VB6 had a certain protective effect on these mice. The results of the PFC and NK cell activity assays indicated that THI exposure might not affect humoral immune or innate immune function.

2.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38613008

ABSTRACT

Sn-2 palmitate is widely used in infant formula. However, little is known about its effects on metabolism and body composition in middle-aged and elderly adults. In a double-blinded, randomized controlled trial, we enrolled Chinese adults aged 45-75 years with self-reported constipation. Individuals were randomly assigned in a 1:1 ratio to a 1,3-dioleoyl-2-palmitoyl-glycerol (OPO)-enriched oil (66% palmitic acid in the sn-2 position) or a control vegetable oil (24% palmitic acid in the sn-2 position) daily for 24 weeks. Skim milk powder was used as the carrier for both fats. Interviews and body composition were performed at baseline, week 4, week 12 and week 24. A fasting blood draw was taken except at week 4. This study was a secondary analysis and considered exploratory. A total of 111 adults (83 women and 28 men, mean age 64.2 ± 7.0 years) were enrolled, of whom 53 were assigned to the OPO group and 57 to the control group. During the intervention, blood glucose, triglyceride, the triglyceride-glucose index, total cholesterol, low-density lipoprotein cholesterol and remnant cholesterol remained stable, while high-density lipoprotein cholesterol decreased in both groups (p = 0.003). No differences in change were observed between the groups (all p > 0.05). From baseline to week 24, the level of visceral fat increased slightly (p = 0.017), while body weight, total body water, protein, soft lean mass, fat-free mass, skeletal muscle and skeletal muscle mass index (SMI) decreased in two groups (p < 0.01). At weeks 4, 12 and 24, the SMI decreased less in the OPO group than in the control group, with a trend towards significance (p = 0.090). A 24-week daily intake of sn-2-palmitate-enriched oil had no adverse impact on fasting blood glucose, lipids and body composition compared with the control vegetable oil in Chinese adults (funded by Chinese Nutrition Society National Nutrition Science Research Grant, National Key Research and Development Program of China and Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd.; ChiCTR1900026480).


Subject(s)
Blood Glucose , Palmitates , Aged , Female , Humans , Male , Middle Aged , Body Composition , China , Cholesterol, HDL , Palmitic Acid , Plant Oils , Triglycerides , East Asian People
3.
Ecotoxicol Environ Saf ; 274: 116193, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38460407

ABSTRACT

Chlorocholine chloride (CCC) is a plant growth regulator used worldwide that is detectable in cereals, fruits and animal products. The health effects of CCC exposure have raised public concern. Our previous research showed that CCC exposure decreased testosterone synthesis in pubertal rats. However, little is known about whether and how pubertal CCC exposure impacts spermatogenesis. In this study, we used BALB/c mice and spermatogonia-derived GC-1 cells to examine CCC-induced spermatogenic dysfunction. In vivo, pubertal CCC exposure led to decreased testicular weight, decreased testicular germ cells and poor sperm quality. This effect worsened after cessation of CCC exposure for the next 30 days. RNA-seq and western blot analysis revealed that CCC induced aryl hydrocarbon receptor (AhR) signaling, endoplasmic reticulum stress (ERS) and ferritinophagy. Increased iron content and lipid peroxidation levels were also observed in CCC-treated testes. In vitro, it was identified that iron overload mediated by enhanced ferritinophagy occurred in CCC-treated GC-1 cells, which might be attributed to the PERK pathway in ERS. Further, for the first time, our study elucidated the involvement of AhR in CCC-induced iron overload, which aggravated testicular oxidative damage via lipid peroxidation. Considering the adverse impact of CCC exposure on rodents, supportive evidence from GC-1 cells, and the critical importance of spermatogenesis on male development, the effects of CCC on the male reproduction warrant increased attention.


Subject(s)
Acetates , Chlormequat , Iron Overload , Phenols , Spermatogenesis , Animals , Male , Mice , Rats , Chlormequat/metabolism , Chlormequat/toxicity , Iron Overload/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Seeds , Spermatogenesis/drug effects , Testis , eIF-2 Kinase/drug effects , eIF-2 Kinase/metabolism
4.
J Appl Toxicol ; 44(4): 542-552, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37908164

ABSTRACT

Lanthanum (La) is widely used in modern industry and agriculture because of its unique physicochemical properties and is broadly exposed in the population. Some studies have shown that La may have some effects on adipogenesis, but there is a lack of related in vivo evidence. In this study, the effects of La(NO3 )3 on adipogenesis and its associated mechanism were studied using C57BL/6J mouse model. The results showed that La(NO3 )3 exposure caused a decrease in body weight and the percentage of fat content in mice. In addition, the adipose marker molecules and specific adipogenic transcription factors decreased in both white adipose tissue (WAT) and brown adipose tissue (BAT). Detection of signaling pathway-related molecules revealed that canonical wnt/ß-catenin pathway-related molecules were upregulated in both adipose tissues. In summary, in vivo exposure to La(NO3 )3 might inhibited adipogenesis in mice, possibly through upregulation of the canonical Wnt/ß-catenin signaling pathway.


Subject(s)
Adipogenesis , Lanthanum , Mice , Animals , Lanthanum/toxicity , Mice, Inbred C57BL , Wnt Signaling Pathway , beta Catenin/metabolism , Cell Differentiation
5.
Toxicology ; 501: 153713, 2024 01.
Article in English | MEDLINE | ID: mdl-38135142

ABSTRACT

Bis (2-ethylhexyl) tetrabromophthalate (TBPH) is a new type of brominated flame retardant. Some studies suggest that TBPH exposure may be associated with thyroid damage. However, there is a paucity of research on the authentic exposure-related effects and molecular mechanisms in animals or cells. In this study, we used male Sprague-Dawley (SD) rats and the Nthy ori3-1 cell line (the human thyroid follicular epithelial cell) to explore the potential effects of TBPH (5, 50, 500 mg/kg and 1, 10, 100 nM) on the thyroid. The genes and their proteins of cytokines and thyroid-specific proteins, thyroglobulin (TG), thyroid peroxidase (TPO), and sodium iodide cotransporter (NIS) were examined to investigate the possible mechanisms. At the end of the experiment, it was found that 50 and 500 mg/kg TBPH could increase the levels of total thyroxine (TT4) and free thyroxine (FT4) significantly. The messenger RNAs (mRNAs) of Tg, Tpo, Interleukin-6 (Il6), and Interleukin-10 (Il10) in the thyroid tissues from the rats treated with 500 mg/kg were enhanced clearly. Meanwhile, the mRNAs of TG, TPO, IL6, and IL10 were elevated in Nthy ori3-1 cells treated with 100 nM TBPH as well. The mRNAs of TG and TPO were elevated after the knockdown of IL6. To our surprise, after the knockdown of IL10 or the treatment of anti-IL-10-receptor (anti-IL-10-R) antibody, the mRNAs of TG and TPO were significantly reduced, and the effects of TBPH were diminished. In conclusion, our results suggested that the IL-10-IL-10R-TG/TPO-T4 axis is one important target of TBPH in the thyroid.


Subject(s)
Thyroglobulin , Thyroid Gland , Male , Humans , Rats , Animals , Thyroglobulin/genetics , Thyroglobulin/metabolism , Thyroglobulin/pharmacology , Interleukin-10/genetics , Thyroxine , Interleukin-6/metabolism , Rats, Sprague-Dawley , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , RNA, Messenger/metabolism
6.
Food Chem Toxicol ; 180: 114027, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37696466

ABSTRACT

As an alternative to octabromodiphenyl ether (octa-BDE), 1, 2-bis (2,4, 6-tribromophenoxy) ethane (BTBPE) has been widely used in a variety of combustible materials, such as plastics, textiles and furniture. Previous studies have demonstrated the thyroid toxicity of traditional brominated flame retardants for example octa-BDE clearly. Nevertheless, little is known about the thyroid toxicity of alternative novel brominated flame retardants BTBPE. In this study, it was demonstrated that BTBPE in vivo exposure induced FT4 reduction in 2.5, 25 and 250 mg/kg bw treated group and TT4 reduction in 25 mg/kg bw treated group. TG, TPO and NIS are key proteins of thyroid hormone synthesis. The results of Western blot and RT-PCR from thyroid tissue showed decreased protein levels and gene expression levels of TG, TPO and NIS as well as regulatory proteins PAX8 and TTF2. To investigate whether the effect also occurred in humans, anthropogenic Nthy-ori 3-1 cells were selected. Similar results were seen in vitro condition. 2.5 mg/L BTBPE reduced the protein levels of PAX8, TTF1 and TTF2, which in turn inhibited the protein levels of TG and NIS. The results in vitro experiment were consistent with that in vivo, suggesting possible thyrotoxic effects of BTBPE on humans. It was indicated that BTBPE had the potential interference of T4 generation and the study provided more evidence of the effects on endocrine disorders.

7.
Toxicology ; 495: 153601, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37531992

ABSTRACT

2-Acetyl-4-tetrahydroxybutylimidazole (THI), a by-product of Class Ⅲ caramel color, is generally recognized to cause lymphopenia in mammals. However, it remains unknown whether THI exposure during gestation and lactation causes damage to the immune system of offspring. In this study, pregnant Balb/c mice were gavaged with 0, 0.5, 2.5 and 12.5 mg/kg THI from gestation day (GD) 6 to postanal day (PND) 21, after which we treated another batch of dams from GD6 to PND21 and the offspring for 3 weeks after weaning with 0, 2, 10, 50 mg/L THI in drinking water respectively, and investigated the immunological anomalies of dams and offspring. The results showed that lymphopenia was observed in dams but not in weaning pups on PND21, which were exposed to THI during gestation and lactation. 2 mg/L THI and 2.5 mg/kg THI began to cause a remarkable reduction of the numbers of white blood cells and lymphocytes in dams. Besides both the cellular and the humoral immune response was not affected in weaning pups, which were measured by plaque-forming cell (PFC) assay and delayed-type hypersensitivity (DTH) assay respectively. Furthermore, THI could be detected in the plasma of dams with a dose-dependent manner, but not in that of both female and male weaning pups. In both male and female offspring being treated with 10 and 50 mg/L THI for another 3 weeks after weaning, lymphocytopenia was observed and T lymphocytes including CD4+ and CD8+ cells were significantly reduced in their spleens except lymph nodes. 10 and 50 mg/L THI treatment increased CD4+ and CD8+ single positive cells in thymus of female and male weaning mice. Mitogen-induced proliferation ability of T cells in the spleen and lymph nodes was impaired in female weaning mice exposed 50 mg/L THI, while male weaning mice treated with 10 and 50 mg/L THI showed impairment in the spleen but not lymph nodes. Based on the results in this study, no observed adverse effect level (NOAEL) for 3-week THI treatment in weaning mice was considered to be 2 mg/L (0.30 mg/kg bw for female mice and 0.34 mg/kg bw for male mice). And NOAEL for THI treatment in dams might be set to 0.5 mg/kg bw/day. Collectively from the perspective of NOAEL, offspring are not more sensitive than dams or adult mice.


Subject(s)
Lymphopenia , Prenatal Exposure Delayed Effects , Humans , Mice , Female , Animals , Male , Pregnancy , Mice, Inbred BALB C , Lactation , Immunity , Prenatal Exposure Delayed Effects/chemically induced , Mammals
8.
Sensors (Basel) ; 23(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514632

ABSTRACT

Visible-light-based transmission application plays an important role in various types of sensor services for the Internet of Things (IoTs). However, in big data scenarios, current visible-light-based systems cannot achieve concurrent high-speed communication, low-speed communication, and positioning. Therefore, in this article, we propose a smart visible-light-based fusion applications system, named Fasys, to solve the above problem for the big data traffic with heterogeneity. Specifically, for low-speed data services, we propose a novel linear block coding and bit interleaving mechanism, which enhances the LED positioning accuracy and recovers the lost data bits in the interframe gap (IFG). For high-speed data services with traffic possessing burstiness, an elegant statistical reliability analysis framework in regard to latency is proposed based on martingale theory. The backlog martingale process is constructed. Leveraging stopping time theory, a tight upper bound of unreliability is obtained. An arrival abstraction and traffic allocation scheme is designed, which contributes to decouple the reliability requirement as the maximum supportable arrival load. Finally, we implement our Fasys system, and extensive experimental results show that our system can achieve consistent high-precision positioning and low-BER data communication for low-speed data services. And the proposed martingale-based traffic allocation scheme can achieve the provisioning of reliability in regard to the latency for high-speed data services.

9.
Chemosphere ; 339: 139680, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37524266

ABSTRACT

Light pollution is now associated with an increased incidence of mental disorders in humans, and the unfixed light pattern (ULP) is a common light pollution that occurs in such as rotating shift work. However, how much contribution the ULP has to depression and its potential mechanism are yet unknown. Our study aimed to investigate the effect of the ULP on depressive-like behaviors in mice and to explore the links to the circadian-orexinergic system. Male C57BL/6 J mice were exposed to the ULP by subjecting them to an alternating light pattern every 6 days for 54 days. The tail suspension test (TST) and forced swimming test (FST) were conducted to assess depressive-like behaviors. The rhythm of locomotor activity and the circadian expression of cFOS in the suprachiasmatic nucleus (SCN), clock genes in the liver, and corticosterone (CORT) in serum were detected to observe changes in the circadian system. The circadian expression of orexin-A (OX-A) in the lateral hypothalamus area (LHA) and dorsal raphe nucleus (DRN) and serotonin (5-HT) in the DRN were measured to determine alterations in the orexinergic system. The results showed that mice exposed to the ULP exhibited increased immobility time in the TST and FST. The ULP significantly disrupted the circadian rhythm of locomotor activity, clock genes in the liver, and CORT in the serum. Importantly, when exposed to the ULP, cFOS expression in the SCN showed decreased amplitude. Its projection area, the LHA, had a lower mesor of OX-A expression. OX-A projection to the DRN and 5-HT expression in the DRN were reduced in mesor. Our research suggests that the ULP contributes to depressive-like behaviors in mice, which might be related to the reduced amplitude of circadian oscillation in the SCN and hypoactivity of the orexinergic system. These findings may provide novel insights into rotating shift work-related depression.


Subject(s)
Dorsal Raphe Nucleus , Serotonin , Humans , Mice , Male , Animals , Serotonin/metabolism , Mice, Inbred C57BL , Dorsal Raphe Nucleus/metabolism , Circadian Rhythm , Orexins , Light
10.
Environ Res ; 232: 116321, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37271434

ABSTRACT

PM2.5 still poses a threat to public health even at very low levels. Black carbon (BC) is a key component of PM2.5. Macrophage extracellular traps (METs) are a means by which macrophages capture and destroy invading pathogens. Necroptosis is an inflammatory programmed cell death. However, there is no research on the crosstalk mechanism between necroptosis and METs after BC exposure. In our study, fluorescence labeling, fluorescent probes, qPCR, and immunofluorescence were applied. Our research found that under normal physiological conditions, when macrophages receive external stimuli (in our experiment, phorbol 12-myristate 13-acetate (PMA)), they will form METs, thus exhibiting innate immune function. However, exposure to BC can cause necroptosis in macrophages accompanied by increased levels of ROS and cytosolic calcium ions as well as altered expression of inflammatory factors and chemokines that prevent the formation of METs, and weakening innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibits the formation of METs. Our experiment will enrich the understanding of the mechanism of macrophage injury caused by BC exposure, provide a new direction for studying harmful atmospheric particle toxicity, and propose new therapeutic insights for diseases caused by atmospheric particulate matter. This study is the first to explore the crosstalk mechanism between necroptosis and METs after BC exposure.


Subject(s)
Extracellular Traps , Extracellular Traps/metabolism , Necroptosis , Macrophages , Particulate Matter/metabolism , Carbon/metabolism
11.
Environ Pollut ; 329: 121655, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37068650

ABSTRACT

The impacts of environmental PM 2.5 on public health have become a major concern all over the world. Many studies have shown that PM 2.5 still poses a threat to public health even at very low levels. Physical or chemical reactions occur between primary particles and other components in the environment, which changes the properties of primary particles. Such newly formed particles with changed properties are called secondary particles. Ozone-oxidized black carbon (oBC) is a key part of PM 2.5 and a representative secondary particle. Macrophages extracellular traps (METs) is a means for macrophages to capture and destroy invading pathogens, thereby exercising innate immunity. Necroptosis is a kind of programmed cell death, which is accompanied by the destruction of membrane integrity, thus inducing inflammatory reaction. However, there is no research on the crosstalk mechanism between necroptosis and MET after oBC exposure. In our study, AO/EB staining, SYTOX Green staining, fluorescent probe, qPCR, Western blot, and immunofluorescence were applied. This experiment found that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in our experiment: phorbol 12-myristate 13-acetate (PMA)), they will form METs, capture and kill pathogens, thus exerting innate immune function. However, exposure to oBC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, and prevent the formation of METs, lose the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. This study was the first to explore the crosstalk mechanism between necroptosis and METs after oBC exposure.


Subject(s)
Extracellular Traps , Ozone , Ozone/chemistry , Necroptosis , Macrophages/metabolism , Particulate Matter/metabolism , Carbon/metabolism
12.
Environ Sci Technol ; 57(15): 6095-6107, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37018376

ABSTRACT

1,4-Naphthoquinone-coated BC (1,4 NQ-BC) is an important component of PM2.5 and a representative secondary particle. However, there is no research on the crosstalk mechanism between necroptosis and macrophage extracellular traps (METs) after 1,4 NQ-BC exposure. In this study, we treated RAW264.7 cells with 50, 100, and 200 mg/L 1,4 NQ-BC for 24 h, with 10 µM necrostatin-1 for 24 h, and with 2.5 µM phorbol 12-myristate 13-acetate (PMA) for 3 h. Our experiment revealed that under normal physiological conditions, when macrophages receive external stimuli (such as pathogens; in this experiment, PMA), they will form METs and capture and kill pathogens, thus exerting innate immune function. However, exposure to 1,4 NQ-BC can cause necroptosis in macrophages, accompanied by increased levels of reactive oxygen species (ROS) and cytosolic calcium ions, as well as the expression disorder of inflammatory factors and chemokines, prevent the formation of METs, lead to loss of the function of capturing and killing pathogens, and weaken the innate immune function. Notably, inhibition of necroptosis restored the formation of METs, indicating that necroptosis inhibited the formation of METs. Our study was the first to explore the crosstalk mechanism between necroptosis and METs. This experiment will enrich the mechanism of macrophage injury caused by 1,4 NQ-BC exposure.


Subject(s)
Extracellular Traps , Particulate Matter , Extracellular Traps/metabolism , Necroptosis , Macrophages/metabolism , Carbon/metabolism
13.
Environ Toxicol ; 38(8): 1939-1950, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37102272

ABSTRACT

Yttrium is a typical heavy rare earth element with widespread use in numerous sectors. Only one previous study has indicated that yttrium has the potential to cause developmental immunotoxicity (DIT). Therefore, there remains a paucity of evidence on the DIT of yttrium. This study aimed to explore the DIT of yttrium nitrate (YN) and the self-recovery of YN-induced DIT. Dams were treated with 0, 0.2, 2, and 20 mg/kg bw/day YN by gavage during gestation and lactation. No significant changes were found in innate immunity between the control and YN-treated groups in offspring. In female offspring at postnatal day 21 (PND21), YN markedly inhibited humoral and cellular immune responses, the proliferative capacity of splenic T lymphocytes, and the expression of costimulatory molecules in splenic lymphocytes. Moreover, the inhibitory effect on cellular immunity in female offspring persisted to PND42. Unlike females, YN exposure did not change the adaptive immune responses in male offspring. Overall, maternal exposure to YN showed a strong DIT to offspring, with the lowest effective dose of 0.2 mg/kg in the current study. The toxicity of cellular immunity could persist throughout development into adulthood. There were sex-specific differences in YN-induced DIT, with females being more vulnerable.


Subject(s)
Maternal Exposure , Prenatal Exposure Delayed Effects , Mice , Humans , Animals , Male , Female , Maternal Exposure/adverse effects , Nitrates/adverse effects , Prenatal Exposure Delayed Effects/chemically induced , Mice, Inbred BALB C , Yttrium/adverse effects
14.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36508801

ABSTRACT

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Subject(s)
Apoferritins , Autophagy , Interleukin-33 , Lysosomes , Naphthoquinones , Soot , Humans , Apoferritins/metabolism , Autophagy/drug effects , Interleukin-33/metabolism , Macrophages/drug effects , Naphthoquinones/toxicity , Soot/toxicity , Up-Regulation , Lysosomes/drug effects
15.
Toxicol Lett ; 374: 57-67, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549429

ABSTRACT

With the increasing application of cerium and rare-earth elements (REEs), cerium exposure is becoming more widespread. However, there remains a paucity of evidence on developmental immunotoxicity of cerium. This study was designed to examine the developmental immunotoxicity of gestational and postnatal exposure to cerium nitrate (CN) in BALB/C mouse offspring. Dams were given CN by oral gavage at 0, 0.002, 0.02 and 0.2 mg/kg from gestation day 5 (GD5) to postnatal day 21 (PND 21). On PND 21, the highest dose of CN significantly suppressed the NK cell cytotoxicity, and reduced the proportions of NK cells in peripheral blood and spleen of both female and male pups, however, the proportions of monocytes in peripheral blood and macrophages in spleen only increased in female pups. For adaptive immunity, on PND 21, the suppression of T/B lymphocyte proliferation, humoral and cellular immune responses (number of splenic plaque-forming cells, PFC, and delayed-type hypersensitivity, DTH) were observed in both female and male pup mice exposed to 0.2 mg/kg CN. However, the fall of proportions of T/B lymphocytes in peripheral blood (PB), spleen and mesenteric lymph node (MLN) only found in female pups at 0.2 mg/kg on PND 21. Most indications recovered to normal after 3-week cessation of CN exposure, except the reduction of DTH and PFC. From the findings in this study, the lowest-observed-adverse-effect level (LOAEL) of CN for developmental immunotoxicity was estimated to be 0.2 mg/kg bw per day.


Subject(s)
Cerium , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Male , Female , Mice, Inbred BALB C , Maternal Exposure/adverse effects , Spleen , Cerium/toxicity , Prenatal Exposure Delayed Effects/pathology
16.
J Appl Toxicol ; 43(3): 402-415, 2023 03.
Article in English | MEDLINE | ID: mdl-36065135

ABSTRACT

Lanthanum (La) as a rare earth element is widely used in agriculture, industry, and medicine. It has been suggested in several studies that La might influence glycolipid metabolism in vivo. In this study, we used 3T3-L1 preadipocytes as in vitro cell model to elucidate the effects of La(NO3 )3 on adipogenesis and the underlying mechanisms. The results showed that La(NO3 )3 could inhibit the adipogenic differentiation of 3T3-L1 preadipocytes, which showed a decrease in lipid accumulation and the downregulation of specific adipogenic transcription factors. La(NO3 )3 exerted its inhibitory effect mainly at the early differentiation stage. Furthermore, La(NO3 )3 influenced the S-phase entry and cell cycle process during the mitotic clonal expansion and regulated the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expressions of the proteins in phosphatidylinositol 3-kinase (PI3K)/Akt pathway at the early stage of differentiation. Besides, La(NO3 )3 upregulated the expressions of wnt10b mRNA and ß-catenin protein and promoted the nucleus translocation of ß-catenin. Additionally, we found that La(NO3 )3 could promote the growth of 3T3-L1 preadipocytes both with and without MDI (3-isobutyl-1-methylxanthine [IBMX], dexamethasone [Dex], and insulin) stimulation. Collectively, these results indicated that La(NO3 )3 could inhibit adipogenesis in 3T3-L1 preadipocytes and influence cell proliferation.


Subject(s)
Adipogenesis , Lanthanum , Animals , Mice , Lanthanum/toxicity , 3T3-L1 Cells , Phosphatidylinositol 3-Kinases , Cell Differentiation
17.
Environ Int ; 170: 107636, 2022 12.
Article in English | MEDLINE | ID: mdl-36423397

ABSTRACT

Ambient air pollution was classified as carcinogenic to humans (Group 1) for lung cancer. DNA damage was an important first step in the process of carcinogenesis, and could also be induced by air pollution. In this study, intratracheal instillation and real-time air exposure system were combined to establish SHP (short-term high-level PM2.5) and LLPO (long-term low-level PM2.5 and O3) exposure patterns, respectively. Hierarchical levels of genetic biomarkers were analyzed to explore DNA damage effects in rats. Representative DNA repair genes from different repair pathways were selected to explore the relative expression levels. The methylation level of differentially expressed repair genes were also determined. Besides, miRNA sequencing and non-targeted metabolomic analysis were performed in rat lungs. KEGG and multi-omics analysis were used to explore the potential mechanism of genetic damage under different air pollution patterns. We found that LLPO exposure induced DSBs and chromosome damage. SHP exposure could induce DSBs and DNA oxidative damage, and the effects of genetic damage under this pollution pattern could be repaired by natural repair. Repair genes involved in two pattern were different. SHP exposure could induce higher methylation levels of RAD51, which might be a potential epigenetic mechanism for high-level PM2.5 induced down-regulated expression of RAD51 and DSBs. Besides, 29 overlapped alterations in metabolic pathways were identified by metabolomic and miRNA sequencing, including purine metabolism and pyrimidine metabolism after LLPO exposure. Differential miRNAs expression in lung tissue were associated with apoptosis, DNA damage and damage repair. We concluded that under different air pollution patterns, DNA damage biomarkers and activated targets of DNA damage repair network were both different. The genetic damage effects caused by high-level short-term PM2.5 can be alleviated by natural repair. We provided possible mechanisms by multi-omics which could explain the increased carcinogenic risk caused by air pollution.


Subject(s)
Air Pollution , Carcinogenesis , DNA Breaks, Double-Stranded , DNA Repair Enzymes , Environmental Exposure , MicroRNAs , Particulate Matter , Animals , Humans , Rats , Metabolomics , MicroRNAs/genetics , Multiomics , Lung , DNA Repair Enzymes/genetics
18.
J Agric Food Chem ; 70(48): 15143-15156, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36410712

ABSTRACT

The effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Rats , Rats, Zucker , Diabetes Mellitus, Type 2/drug therapy , Anthocyanins , Diabetes Mellitus, Experimental/drug therapy , Metabolome , Plant Extracts , Glucose
19.
Environ Toxicol ; 37(10): 2434-2444, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35776887

ABSTRACT

Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.


Subject(s)
Endothelial Cells , Proto-Oncogene Proteins c-akt , Carbon , Cell Survival , Endothelial Cells/metabolism , Humans , Interleukin-33/genetics , Interleukin-33/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Transcription Factor AP-1/metabolism
20.
Sci Total Environ ; 835: 155357, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35452731

ABSTRACT

BACKGROUND: As air pollution has been paid more attention to by public in recent years, effects and mechanism in particulate matter-triggered health problems become a focus of research. Lysosomes and mitochondria play an important role in regulation of inflammation. Interleukin-33 (IL-33) has been proved to promote inflammation in our previous studies. In this research, macrophage cell line RAW264.7 was used to explore the potential mechanism of upregulation of IL-33 induced by 1,4-naphthoquinone black carbon (1,4-NQ-BC), and to explore changes of lysosomes and mitochondria during the process. RESULTS: 50 µg/mL 1,4-NQ-BC exposure for 24 h dramatically increased expression of IL-33 in RAW264.7 cells. Lysosomal membrane permeability was damaged by 1,4-NQ-BC treatment, and higher mitochondrial membrane potential and ROS level were induced by 1,4-NQ-BC. The results of proteomics suggested that expression of ferritin light chain was increased after cells were challenged with 1,4-NQ-BC, and it was verified by Western blot. Meanwhile, expressions of p62 and LC3B-II were increased by 50 µg/mL 1,4-NQ-BC in RAW264.7 cells. Ultimately, expression of IL-33 could return to same level as control in cells treated with 50 µg/mL 1,4-NQ-BC and 50 µM deferoxamine combined. CONCLUSIONS: 1,4-NQ-BC induces IL-33 upregulation in RAW264.7 cells, and it is responsible for higher lysosomal membrane permeability and ROS level, lower mitochondrial membrane potential, and inhibition of autophagy. Ferritin light chain possibly plays an important role in the upregulation of IL-33 evoked by 1,4-NQ-BC.


Subject(s)
Apoferritins , Carbon , Interleukin-33 , Naphthoquinones , Animals , Apoferritins/metabolism , Humans , Inflammation , Interleukin-33/metabolism , Mice , Naphthoquinones/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Soot/chemistry , Soot/pharmacology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...