Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Plant Biol ; 66(4): 683-699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358036

ABSTRACT

Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.


Subject(s)
Drought Resistance , Seedlings , Seedlings/genetics , Medicago sativa/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Genome-Wide Association Study , Hydrogen Peroxide/metabolism , Plant Breeding , Droughts
2.
Fish Physiol Biochem ; 38(2): 363-73, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21638009

ABSTRACT

In this study, we examine changes in fatty acid composition of polar and neutral lipids in gill, liver, and muscle of freshwater alewives (Alosa pseudoharengus) after temperature challenges in the laboratory. Alewives experienced either a warm or cold challenge in which temperatures were raised or lowered 0.5°C day(-1) over 4-6 weeks. In alewives experiencing the cold challenge, gill polar lipids showed evidence of significant remodeling, including decreases in palmitic acid and saturated fatty acids and increases in n-3 and n-6 highly unsaturated fatty acids including docosahexaenoic acid (DHA) and arachidonic acid. In alewives experiencing the warm challenge, we observed significant increases in saturated fatty acids (due mainly to increased palmitic acid) and decreases in polyunsaturated fatty acids in polar lipids of muscle and liver tissue. Fish that died during the cold challenge had significantly higher levels of palmitic acid in muscle polar lipids compared to fish that survived; fish that died during the warm challenge displayed complex changes in fatty acid composition. Based on theoretical considerations, the changes in polar lipids we observed during thermal acclimation are likely to promote appropriate membrane fluidity under each thermal regime. The increased incorporation of highly unsaturated fatty acids during cold acclimation could have significant physiological and ecological implications. In particular, since highly unsaturated fatty acids are typically scarce in freshwater food webs, dietary deficiencies in these essential fatty acids may be a significant factor in winter mortality of freshwater alewives.


Subject(s)
Acclimatization , Fatty Acids/metabolism , Fishes/metabolism , Temperature , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...