Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Article in English | MEDLINE | ID: mdl-38803168

ABSTRACT

BACKGROUND AND AIMS: Inflammatory Bowel Disease (IBD) is a refractory disease with repeated attacks, and there is no accurate treatment target at present. Dipyridamole, a phosphodiesterase (PDE) inhibitor, has been proven to be an effective treatment for IBD in a pilot study. This study explored the therapeutic target of IBD and the pharmacological mechanism of dipyridamole for the treatment of IBD. MATERIALS AND METHODS: The candidate targets of dipyridamole were obtained by searching the pharmMapper online server and Swiss Target Prediction Database. The IBD-related targets were selected from four GEO chips and three databases, including Genecards, DisGeNET, and TTD database. A protein-protein interaction (PPI) network was constructed, and the core targets were identified according to the topological structure. KEGG and GO enrichment analysis and BioGPS location were performed. Finally, molecular docking was used to verify dipyridamole and the hub targets. RESULTS: We obtained 112 up-regulated genes and 157 down-regulated genes, as well as 105 composite targets of Dipyridamole-IBD. Through the PPI network analysis, we obtained the 7 hub targets, including SRC, EGFR, MAPK1, MAPK14, MAPK8, PTPN11, and LCK. The BioGPS showed that these genes were highly expressed in the immune system, digestive system, and endocrine system. In addition, the 7 hub targets had good intermolecular interactions with dipyridamole. The therapeutic effect of dipyridamole on IBD may involve immune system activation and regulation of inflammatory reactions involved in the regulation of extracellular matrix, perinuclear region of cytoplasm, protein kinase binding, and positive regulation of programmed cell death through cancer pathway (proteoglycans in cancer), lipid metabolism, Ras signaling pathway, MAPK signaling pathway, PI3K-AKT signaling pathway, Th17 cell differentiation, and other cellular and innate immune signaling pathways. CONCLUSION: This study predicted the therapeutic target of IBD and the molecular mechanism of dipyridamole in treating IBD, providing a new direction for the treatment of IBD and a theoretical basis for further research.

2.
J Physiol Biochem ; 80(2): 381-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38536659

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly vascularized tumor, one of the most common and lethal cancer-related tumor deaths worldwide, with cell proliferation playing a key role. In this study our western blot results and data from TAGC demonstrate a strong association between Sorcin (SRI) overexpression and poor outcomes in HCC. Moreover, SRI overexpression was remarkably effective in promoting proliferation in vitro and increasing tumor growth in vivo, which were attenuated by knocking down SRI. Mechanistically, SRI regulated vascular endothelial growth factor A (VEGFA) and vascular endothelial growth factor B (VEGFB) through PI3K/Akt/FOXO1 signal pathway. Overall, our study indicates that SRI stimulates HCC growth by controlling VEGFA/B, which presents a fresh insight into the pathogenesis of hepatocarcinogenesis and a new therapeutic target for HCC.


Subject(s)
Calcium-Binding Proteins , Carcinoma, Hepatocellular , Cell Proliferation , Liver Neoplasms , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor B , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor B/metabolism , Vascular Endothelial Growth Factor B/genetics
3.
Eur J Pharmacol ; 967: 176365, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38316247

ABSTRACT

Glycyrrhizic acid (GA), one of the major active components derived from licorice root, exerts liver-protecting activity. Its molecular mechanisms of action, however, remain not completely understood. The angiotensin (Ang) converting enzyme (ACE) 2/Ang-(1-7)/Mas axis, regulated by ACE2 through converting Ang II into Ang-(1-7) to activate Mas receptor, counteracts the pro-inflammatory and pro-steatotic effects of the ACE/Ang II/Ang II receptor type 1 (AT1) axis. Here, it was found that pretreatment with GA suppressed LPS/D-galactosamine-induced serum hyperactivities of alanine aminotransferase and aspartate aminotransferase, hepatomegaly, pathological changes, and over-accumulation of triglycerides and fatty droplets in the liver of mice. GA also diminished LPS/free fatty acid-induced inflammation and steatosis in cultured hepatocytes. Mechanistically, GA restored hepatic protein hypoexpression of ACE2 and Mas receptor, and the decrease in hepatic Ang-(1-7) content. Hepatic overexpression of angiotensin II and AT1 was also suppressed. However, GA did not alter hepatic protein expression of renin and ACE. In addition, GA inhibited hepatic protein over-phosphorylation of the p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, extracellular signal-regulated kinase, and nuclear factor κB at Ser536. Hepatic overexpression of tumor necrosis factor α, interleukin 6, interleukin 1ß, sterol regulatory element-binding protein 1c, and fatty acid synthase was also inhibited. GA-elicited recovery of ACE2 and Mas protein hypoexpression was further confirmed in the hepatocyte. Thus, the present results demonstrate that GA restores the downregulated hepatic ACE2-mediated anti-inflammatory and anti-steatotic signaling in the amelioration of steatohepatitis. We suggest that GA may protect the liver from injury by regulating the hepatic ACE2-mediated signaling.


Subject(s)
Angiotensin-Converting Enzyme 2 , Fatty Liver , Mice , Animals , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Lipopolysaccharides , Peptidyl-Dipeptidase A/metabolism , Peptide Fragments/pharmacology , Angiotensin II , Angiotensin I/metabolism , Receptors, G-Protein-Coupled/metabolism
4.
Cell Rep Med ; 4(11): 101236, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37827154

ABSTRACT

Despite potential impact on the graft vs. leukemia (GVL) effect, immunotherapy targeting CTLA-4 and/or PD-1 has not been successfully combined with bone marrow transplant (BMT) because it exacerbates graft vs. host disease (GVHD). Here, using models of GVHD and leukemia, we demonstrate that targeting hypoxia-inducible factor 1α (HIF1α) via pharmacological or genetic approaches reduces GVHD by inducing PDL1 expression on host tissue while selectively inhibiting PDL1 in leukemia cells to enhance the GVL effect. More importantly, combination of HIF1α inhibition with anti-CTLA-4 antibodies allows simultaneous inhibition of both PDL1 and CTLA-4 checkpoints to achieve better outcomes in models of mouse and human BMT-leukemia settings. These findings provide an approach to enhance the curative effect of BMT for leukemia and broaden the impact of cancer immunotherapy.


Subject(s)
Graft vs Host Disease , Leukemia , Humans , CTLA-4 Antigen , Graft vs Host Disease/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit , Immunotherapy , Leukemia/genetics , Leukemia/therapy , Animals , Mice
5.
Pharmgenomics Pers Med ; 15: 143-155, 2022.
Article in English | MEDLINE | ID: mdl-35228813

ABSTRACT

PURPOSE: Tacrolimus (TAC) is a first-line immunosuppressant for patients with refractory nephrotic syndrome (NS). However, there is a high inter-patient variability of TAC pharmacokinetics, thus therapeutic drug monitoring (TDM) is required. In this study, we aimed to employ machine learning algorithms to investigate the impact of clinical and genetic variables on the TAC dose/weight-adjusted trough concentration (C0/D) in Chinese children with refractory NS, and then develop and validate the TAC C0/D prediction models. PATIENTS AND METHODS: The association of 82 clinical variables and 244 single nucleotide polymorphisms (SNPs) with TAC C0/D in the third month since TAC treatment was examined in 171 children with refractory NS. Extremely randomized trees (ET), gradient boosting decision tree (GBDT), random forest (RF), extreme gradient boosting (XGBoost), and Lasso regression were carried out to establish and validate prediction models, respectively. The best prediction models were validated on a cohort of 30 refractory NS patients. RESULTS: GBDT algorithm performed best in the whole group (R2=0.444, MSE=591.032, MAE=20.782, MedAE=18.980) and CYP3A5 nonexpresser group (R2=0.264, MSE=477.948, MAE=18.119, MedAE=18.771), while ET algorithm performed best in the CYP3A5 expresser group (R2=0.380, MSE=1839.459, MAE=31.257, MedAE=19.399). These prediction models included 3 clinical variables (ALB0, AGE0, and gender) and 10 SNPs (ACTN4 rs3745859, ACTN4 rs56113315, ACTN4 rs62121818, CTLA4 rs4553808, CYP3A5 rs776746, IL2RA rs12722489, INF2 rs1128880, MAP3K11 rs7946115, MYH9 rs2239781, and MYH9 rs4821478). CONCLUSION: The association between the clinical and genetic variables and TAC C0/D was described, and three TAC C0/D prediction models integrating clinical and genetic variables were developed and validated using machine learning, which may support individualized TAC dosing.

7.
Sheng Li Xue Bao ; 73(5): 795-804, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34708236

ABSTRACT

Farnesoid X receptor (FXR) has been identified as an inhibitor of platelet function and an inducer of fibrinogen protein complex. However, the regulatory mechanism of FXR in hemostatic system remains incompletely understood. In this study, we aimed to investigate the functions of FXR in regulating antithrombin III (AT III). C57BL/6 mice and FXR knockout (FXR KO) mice were treated with or without GW4064 (30 mg/kg per day). FXR activation significantly prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), lowered activity of activated factor X (FXa) and concentrations of thrombin-antithrombin complex (TAT) and activated factor II (FIIa), and increased level of AT III, whereas all of these effects were markedly reversed in FXR KO mice. In vivo, hepatic AT III mRNA and protein expression levels were up-regulated in wild-type mice after FXR activation, but down-regulated in FXR KO mice. In vitro study showed that FXR activation induced, while FXR knockdown inhibited, AT III expression in mouse primary hepatocytes. The luciferase assay and ChIP assay revealed that FXR can bind to the promoter region of AT III gene where FXR activation increased AT III transcription. These results suggest FXR activation inhibits coagulation process via inducing hepatic AT III expression in mice. The present study reveals a new role of FXR in hemostatic homeostasis and indicates that FXR might act as a potential therapeutic target for diseases related to hypercoagulation.


Subject(s)
Antithrombin III , Hepatocytes , Receptors, Cytoplasmic and Nuclear , Animals , Blood Coagulation , Liver , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/genetics
8.
Drug Deliv ; 28(1): 1432-1442, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34236267

ABSTRACT

The vascular endothelial growth factor receptor 2 (VEGFR2) is considered to be a pivotal target for anti-tumor therapy against angiogenesis of non-small cell lung cancer (NSCLC). However, effective and low-toxicity targeted therapies to inhibit VEGFR2 are still lacking. Here, biRGD-siVEGFR2 conjugate comprising murine VEGFR2 siRNA and [cyclo(Arg-Gly-Asp-D-Phe-Lys)-Ahx]2-Glu-PEG-MAL (biRGD) peptide which selectively binds to integrin αvß3 receptors expressing on neovascularization endothelial cell was synthesized. The anti-tumor activity and renal toxicity of biRGD-siVEGFR2 or its combination therapy with low-dose apatinib were investigated on NSCLC xenografts. The immunogenicity of biRGD-siVEGFR2 was also evaluated in C57BL/6J mice. In vivo, intravenously injected biRGD-siVEGFR2 substantially inhibited NSCLC growth with a marked reduction of vessels and a down-regulation of VEGFR2 in tumor tissue. Furthermore, biRGD-siVEGFR2 in combination with low-dose apatinib achieved powerful anti-tumor effect with less nephrotoxicity compared with the regular dose of apatinib. Besides, no obvious immunogenicity of biRGD-siVEGFR2 was found. These findings demonstrate that biRGD-siVEGFR2 conjugate can be used as a new candidate for the treatment of NSCLC and its combination therapy with apatinib may also provide a novel strategy for cancer treatment in clinic.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Peptides, Cyclic/pharmacology , RNA, Small Interfering/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Peptides, Cyclic/administration & dosage , Pyridines/pharmacology , RNA, Small Interfering/administration & dosage , Random Allocation , Xenograft Model Antitumor Assays
9.
Cancer Cell Int ; 21(1): 4, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33397392

ABSTRACT

BACKGROUND: Leptin Receptor (LEPR) has been suggested to have several roles in cancer metastasis. However, the role of LEPR and its underlying mechanisms in lymphatic metastasis of hepatocarcinoma have not yet been studied. METHODS: We performed bioinformatics analysis, qRT-PCR, western blotting, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent, coimmunoprecipitation assays and a series of functional assays to investigate the roles of LEPR in hepatocellular carcinoma. RESULTS: We discovered that LEPR was highly expressed in liver cancer tissues, and the expression of LEPR in Hca-F cells was higher than that in Hca-P cells. Furthermore, LEPR promotes the proliferation, migration and invasion and inhibits the apoptosis of hepatocarcinoma lymphatic metastatic cells. Further studies indicated that LEPR interacts with ANXA7. Mechanistically, LEPR regulated ERK1/2 and JAK2/STAT3 expression via ANXA7 regulation. CONCLUSIONS: These findings unveiled a previously unappreciated role of LEPR in the regulation of lymphatic metastatic hepatocellular carcinoma, assigning ANXA7-LEPR as a promising therapeutic target for liver cancer treatments.

10.
Biochim Biophys Acta Mol Basis Dis ; 1867(3): 165996, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33127475

ABSTRACT

Cisplatin-induced acute kidney injury (CAKI) has been recognized as one of the most serious side effects of cisplatin. Pregnane X receptor (PXR) is a ligand-dependent nuclear receptor and serves as a master regulator of xenobiotic detoxification. Increasing evidence also suggests PXR has many other functions including the regulation of cell proliferation, inflammatory response, and glucose and lipid metabolism. In this study, we aimed to investigate the role of PXR in cisplatin-induced nephrotoxicity in mice. CAKI model was performed in wild-type or PXR knockout mice. Pregnenolone 16α­carbonitrile (PCN), a mouse PXR specific agonist, was used for PXR activation. The renal function, biochemical, histopathological and molecular alterations were examined in mouse blood, urine or renal tissues. Whole transcriptome analysis was performed by RNA sequencing. We found that PXR activation significantly attenuated CAKI as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative and endoplasmic reticulum stress, and suppressed inflammatory gene expression. RNA sequencing analysis revealed that the renoprotective effect of PXR was associated with multiple crucial signaling pathways, especially the PI3K/AKT pathway. In vitro study further revealed that PXR protected against cisplatin-induced apoptosis of cultured proximal tubule cells in a PI3K-dependent manner. Our results demonstrate that PXR activation can preserve renal function in cisplatin-induced AKI and suggest a possibility of PXR as a novel protective target for cisplatin-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Kidney/drug effects , Pregnane X Receptor/metabolism , Acute Kidney Injury/pathology , Animals , Cells, Cultured , Kidney/metabolism , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Protective Factors , Signal Transduction/drug effects
11.
Clin Chim Acta ; 510: 741-745, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32946798

ABSTRACT

Sorcin (Soluble resistance-related calcium binding protein) is a calcium binding oncoprotein. Sorcin is overexpressed in several human tumors and cancer cells lines which confers multidrug resistance (MDR) to these cells. This review summarizes the biochemical functions of Sorcin which includes modulation of calcium homeostasis, apoptosis, and cancer metastasis. Sorcin is involved in various biological processes by interacting with other proteins, such as p-glycoprotein, programmed cell death protein 6, tumor necrosis factor receptor-associated protein 1, Annexin A7, polo-like kinase 1, HCV nonstructural 5A, signal transducer and activator of transcription 3, presenilin 2, α-synuclein, Ca2+-release channel and others. A deeper look into the function and interacting partners of Sorcin sheds more light on the possible effects of its physical activity and more elaborately, exploring the role of Sorcin in future research prospects.


Subject(s)
Drug Resistance, Multiple , Drug Resistance, Neoplasm , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Calcium/metabolism , Calcium-Binding Proteins , Humans
12.
Int J Clin Exp Pathol ; 13(3): 357-370, 2020.
Article in English | MEDLINE | ID: mdl-32269673

ABSTRACT

Recent studies have indicated that ANXA7 promotes progression and metastasis of hepatocellular carcinoma (HCC). In this study we found a significant negative correlation between the levels of miR-124-3p and ANXA7 protein in HCC. Level of miR-124-3p in tumor tissues was negatively correlated, while ANXA7 protein was positively correlated, with TNM stage and tumor metastasis. Furthermore, we confirmed ANXA7 was a target gene of miR-124-3p by a dual luciferase reporter assay. In vitro, up-regulation of miR-124-3p promotes apoptosis and inhibits migration and invasion of Hca-F. Bcl-2 correlates X protein (Bax) protein level was up-regulated, while ANXA7, B-cell lymphoma-2 (Bcl-2), Matrix metalloproteinase (MMP-9) and C-X-C motif chemokine 12 (CXCL12) protein levels were suppressed relative to miR-124-3p over-expression. In vivo, up-regulation of miR-124-3p suppresses lymph node metastasis (LNM) and tumorigenicity of Hca-F cells. The expression of ANXA7, MMP-9, and CXCL12 protein in transplanted tumors was suppressed relative to miR-124-3p overexpression. In addition, we found the levels of Bcl-2, MMP-9, and CXCL12 in Hca-F cells decreased significantly after transfection of shRNA-Anxa7 in vitro. In conclusion, our study revealed miR-124-3p inhibits tumor growth, invasion, and lymphatic metastasis in HCC by down-regulation of ANXA7 gene, thereby reducing the expression of Bcl-2, MMP-9, and CXCL12.

13.
Exp Cell Res ; 390(1): 111949, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32145254

ABSTRACT

Farnesoid X receptor (FXR) is a metabolic nuclear receptor, which protects liver from many endogenous and exogenous injuries. Metallothioneins (MTs) belong to a low-molecular-weight protein family involved in metal homeostasis and the regulation of hepatic oxidative stress. In the present study, we aimed to investigate the effect of FXR on hepatic MT1 expression and the underlying mechanism. C57BL/6 mice or primary cultured mouse hepatocytes were treated with the synthetic FXR ligand GW4064 or natural ligand CDCA. RNA-Sequencing (RNA-seq) analysis was performed to identify gene expression profile in the livers of mice treated with GW4064. Real-time PCR and Western blot were applied to determine the expression of MT1 and other FXR target genes in the livers of mice and primary hepatocytes treated with GW4064 and CDCA. Cellular and subcellular locations of MT1 in the livers of mice treated with GW4064 were examined using immunohistochemistry assay. FXR small interfering RNAs (siRNA) was transfected to silence FXR. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to confirm the regulation of MT1 gene promoter activity by FXR. RNA-seq analysis revealed that GW4064 treatment significantly induced MT1 expression in mouse liver. Consistently, MT1 expression in the hepatocytes of mouse livers and cultured hepatocytes was upregulated by GW4064 as well as CDCA. In addition, adenovirus-mediated overexpression of FXR markedly increased, while siRNA-mediated FXR silencing significantly suppressed MT1 expression in cultured hepatocytes. Luciferase reporter and ChIP assays further confirmed that the MT1 gene was under the direct control of FXR. Collectively, our findings demonstrate that MT1 is a novel target gene of FXR and may contribute to antioxidative capacity of FXR in liver diseases.


Subject(s)
Liver/metabolism , Metallothionein/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cells, Cultured , Hepatocytes/metabolism , Humans , Male , Metallothionein/metabolism , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/genetics
14.
Mol Ther Nucleic Acids ; 13: 220-232, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30312846

ABSTRACT

The PI3K-AKT-mTOR-signaling pathway is frequently activated in glioblastoma (GBM). Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB)/p110ß (a PI3K catalytic isoform) by RNAi substantially suppresses GBM growth with less toxicity to normal astrocytes. However, insufficient and non-specific small interfering RNA (siRNA) delivery may limit the efficacy of RNAi-based therapies against GBM. Here we prepared a novel methoxy-modified PIK3CB siRNA molecule (siPIK3CB) that was covalently conjugated to a [cyclo(Arg-Gly-Asp-D-Phe-Lys)-Ahx]2-Glu-PEG-MAL (biRGD) peptide, which selectively binds to integrin αvß3 receptors. The αvß3-positive U87MG cell line was selected as a representative for GBM. An orthotopic GBM xenograft model based on luciferase-expressing U87MG was established and validated in vivo to investigate bio-distribution and anti-tumor efficacy of biRGD-siPIK3CB. In vitro, biRGD-siPIK3CB specifically entered and silenced PIK3CB expression in GBM cells in an αvß3 receptor-dependent manner, thus inhibiting cell cycle progression and migration and enhancing apoptosis. In vivo, intravenously injected biRGD-siPIK3CB substantially slowed GBM growth and prolonged survival by reducing tumor viability with silencing PIK3CB expression. Furthermore, biRGD-siPIK3CB led to mild tubulointerstitial injury in the treatment of GBM without obvious hepatotoxicity, whereas co-infusion of Gelofusine obviously alleviated this injury without compromising anti-tumor efficacy. These findings revealed a great translational potential of biRGD-siPIK3CB conjugate as a novel molecule for GBM therapy.

15.
Mol Ther Nucleic Acids ; 11: 300-311, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29858065

ABSTRACT

Integrin αvß3, which is selectively targeted by cyclic arginine-glycine-aspartic acid (cRGD) peptides, is significantly upregulated in tumors. Previous studies showed that small interfering RNA (siRNA) modified with cRGD (cRGD-siRNA) could significantly inhibit tumor growth through RNAi with oncogene expression. However, cRGD-siRNA is partially reabsorbed and trapped in the kidneys, causing renal injury in an unpredictable manner. This study aimed to investigate the influence of Gelofusine on tubulointerstitial injury induced by cRGD-siRNA in vitro and in vivo. The effect of Gelofusine on the distribution of cRGD-siRNA in tumor-bearing nude mice and wild-type mice was also explored. We found that Gelofusine inhibited apoptosis and activation of the innate immune response of human tubular epithelial cells induced by cRGD-siRNA in vitro. In addition, co-injection of Gelofusine efficiently reduced renal retention of cRGD-siRNA without affecting its tumor targeting in vivo. Further in vivo studies indicated that Gelofusine significantly attenuated tubulointerstitial injury induced by cRGD-siRNA through regulating Toll-like receptor 3 (TLR3)-mediated activation of the nuclear factor κ B (NF-κB) and caspase-3 apoptotic pathway. In conclusion, Gelofusine, acting as a novel and effective renal protective agent, could form a compound preparation with siRNA drugs for future clinical applications.

16.
Proc Natl Acad Sci U S A ; 115(21): 5600-5605, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29739889

ABSTRACT

Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.


Subject(s)
Kidney Concentrating Ability/physiology , Kidney Medulla/cytology , Kidney Tubules, Collecting/cytology , Osmotic Pressure/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stress, Physiological , Transcription Factors/metabolism , Animals , Gene Expression Regulation , Kidney Medulla/metabolism , Kidney Tubules, Collecting/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/genetics
17.
Ren Fail ; 40(1): 187-195, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29619875

ABSTRACT

Based on successful targeting to the αvß3 integrin of cyclic arginine-glycine-aspartic acid (cRGD), cRGD-conjugated small interfering RNA (siRNA) exhibits tumor targeting and has become a new treatment strategy for solid tumors. However, the nephrotoxicity caused by its renal retention limits its clinical application. Here, we evaluated the protective effect of Gelofusine against cRGD-conjugated siRNA-induced nephrotoxicity in mice. Male Kunming mice (six per group) were either co-injected with Gelofusine and cRGD-siRNA or injected with cRGD-siRNA alone. After administration of these treatments five times, creatinine and blood urea nitrogen (BUN) levels were determined. Hematoxylin-eosin staining (HE staining) and transferase dUTP nick end labeling (TUNEL) analysis were used to compare the difference in renal damage between the groups. Additionally, fluorescence imaging was used to observe the distribution of cRGD-siRNA in vivo. The group co-injected with Gelofusine and cRGD-siRNA displayed lower creatinine and BUN levels than the cRGD-siRNA-alone group and showed less renal damage upon HE staining and TUNEL analysis. Gelofusine decreased the retention time and accelerated the elimination of cRGD-siRNA from the organs, as observed in the fluorescence images. These data indicate that Gelofusine significantly increased the excretion of cRGD-conjugated siRNA and reduced the associated renal damage.


Subject(s)
Acute Kidney Injury/prevention & control , Kidney/drug effects , Polygeline/therapeutic use , RNA, Small Interfering/immunology , Renal Elimination/drug effects , Acute Kidney Injury/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Delivery Systems , Humans , Integrin alphaVbeta3/genetics , Kidney/metabolism , Male , Mice , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Peptides, Cyclic/toxicity , Polygeline/pharmacology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Tissue Distribution
18.
J Cell Biochem ; 119(7): 5704-5714, 2018 07.
Article in English | MEDLINE | ID: mdl-29388711

ABSTRACT

Prolactinomas are the most prevalent functional pituitary adenomas that cause chronic pathological hyperprolactinemia. Prolactin is known to promote cell growth and inhibit apoptosis in cells. Paeoniflorin is the principal component of radix Paeoniae alba (the main ingredient in some traditional herbal formulas clinically used for hyperprolactinemia-associated disorders). Recent findings from intensive studies have suggested that paeoniflorin regulates cell proliferation and apoptosis in many cell lines. However, the effects of paeoniflorin in pituitary tumor cells remain unknown. Here the results by the Cell Counting Kit-8 and colony formation assays showed that paeoniflorin concentration-dependently decreased cell viability in both MMQ and GH3 cells and colony formation in GH3 cells, suggesting inhibition of cell proliferation by paeoniflorin. By flow cytometry, paeoniflorin was found to increase apoptotic rate in MMQ cells. Mechanistically, Western blot results revealed that paeoniflorin enhanced protein expression of cleave caspase-9 and -3, and Bax, whereas it suppressed Bcl-2 protein expression in MMQ cells. Furthermore, paeoniflorin upregulated phosphorylated p53 protein expression, but it decreased prolactin concentration and prolactin protein expression in both MMQ and GH3 cells. Thus, the present results demonstrate that paeoniflorin inhibits cell proliferation and induces the mitochondrial pathway-mediated apoptosis in prolactinoma cells. These antitumor property is associated with inhibition of prolactin secretion. Our findings may provide new insight into the mechanisms underlying improving prolactinoma-associated disorders of paeoniflorin-enriched herbs and formulas.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Glucosides/pharmacology , Monoterpenes/pharmacology , Prolactin/antagonists & inhibitors , Prolactinoma/pathology , Cell Cycle/drug effects , Cell Survival/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Phosphorylation , Prolactinoma/drug therapy , Prolactinoma/metabolism , Signal Transduction , Tumor Cells, Cultured
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(7): 800-806, 2018 Jul 30.
Article in Chinese | MEDLINE | ID: mdl-33168513

ABSTRACT

OBJECTIVE: To investigate the effect of small interfering RNA (siRNA)-mediated silencing of programmed cell deathligand 1 (PD-L1) in human glioma cells on the cytotoxicity of human CD8+T lymphocytes against the modified tumor cells. METHODS: A siRNA sequence targeting PD-L1 gene was designed and transfected into human glioma U87 MG cells via lipofectamine 2000, and the gene silencing effect was validated using RT-qPCR, Western blotting, and flow cytometry. The transfected cells were co-cultured with human CD8+T lymphocytes, and the apoptosis of the tumor cells was analyzed with flow cytometry. RESULTS: The siRNA sequence showed strong PD-L1 gene-silencing effect at both mRNA and protein levels in U87 MG cells. Compared with the control cells, the transfected U87 MG cells showed significantly increased vulnerability to the cytotoxicity of human CD8+T cells and an obvious reduction of proliferative activity in the co-culture (P < 0.05). CONCLUSIONS: Transfection of human glioma U87 MG cells with the specific siRNA targeting PD-L1 obviously enhances the toxicity of human T lymphocytes in the co-culture.

20.
J Cell Commun Signal ; 12(3): 603-613, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29275459

ABSTRACT

Our previous study (Oncotarget 2016; 7:46) demonstrated that the over-expression of sulfatase-1 in murine hepatocarcinoma Hca-F cell line (a murine HCC cell with lymph node metastatic [LNM] rate of >75%) downregulates mesothelin and leads to reduction in lymphatic metastasis, both in vitro and in vivo. In current work, we investigated the effects of Sulf-1 knockdown on mesothelin (Msln) and it's effects on the in vitro cell proliferation, migration, invasion, and in vivo tumor growth and LNM rate for Hca-P cells (a murine HCC cell with LNM rate of <25%). Western blotting and qRT-PCR assay indicated that both in vitro and in vivo Sulf-1 was down-regulated by 75% and 68% and led to up regulation of Msln by 55% in shRNA-transfected-Sulf-1-Hca-P cells compared with Hca-P and nonspecific sequence control plasmid transfected Hca-P cell (shRNA-Nc-Hca-P). The in vitro proliferation, migration and invasion potentials were significantly enhanced following Sulf-1 stable down-regulation. In addition, Sulf-1 knock-down significantly promoted tumor growth and increased LNM rates of shRNA-Sulf-1-Hca-P-transplanted mice by 78.6% (11 out of 14 lymph nodes were positive of cancer). Consistent with our previous work, we confirmed that Sulf-1 plays an important role in hepatocarcinoma cell proliferation, migration, invasion and metastasis. The interaction between Sulf-1 and Msln is a potential therapeutic target in the development of liver cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...