Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinform Adv ; 3(1): vbad085, 2023.
Article in English | MEDLINE | ID: mdl-37456509

ABSTRACT

Motivation: To date, no methods are available for the targeted identification of genomic subregions with differences in sequencing read distributions between two conditions. Existing approaches either only determine absolute read number changes, require predefined subdivisions of input windows or average across multiple genes. Results: Here, we present RegCFinder, which automatically identifies subregions of input windows with differences in read density between two conditions. For this purpose, the problem is defined as an instance of the all maximum scoring subsequences problem, which can be solved in linear time. Subsequently, statistical significance and differential usage of identified subregions are determined with DEXSeq. RegCFinder allows flexible definition of input windows to target the analysis to any regions of interests, e.g. promoters, gene bodies, peak regions and more. Furthermore, any type of sequencing assay can be used as input; thus, RegCFinder lends itself to a wide range of applications. We illustrate the usefulness of RegCFinder on two applications, where we can both confirm previous results and identify interesting gene subgroups with distinctive changes in read distributions. Availability and implementation: RegCFinder is implemented as a workflow for the workflow management system Watchdog and available at: https://github.com/watchdog-wms/watchdog-wms-workflows/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

2.
Nat Commun ; 14(1): 4591, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37524699

ABSTRACT

Herpes simplex virus 1 (HSV-1) infection and stress responses disrupt transcription termination by RNA Polymerase II (Pol II). In HSV-1 infection, but not upon salt or heat stress, this is accompanied by a dramatic increase in chromatin accessibility downstream of genes. Here, we show that the HSV-1 immediate-early protein ICP22 is both necessary and sufficient to induce downstream open chromatin regions (dOCRs) when transcription termination is disrupted by the viral ICP27 protein. This is accompanied by a marked ICP22-dependent loss of histones downstream of affected genes consistent with impaired histone repositioning in the wake of Pol II. Efficient knock-down of the ICP22-interacting histone chaperone FACT is not sufficient to induce dOCRs in ΔICP22 infection but increases dOCR induction in wild-type HSV-1 infection. Interestingly, this is accompanied by a marked increase in chromatin accessibility within gene bodies. We propose a model in which allosteric changes in Pol II composition downstream of genes and ICP22-mediated interference with FACT activity explain the differential impairment of histone repositioning downstream of genes in the wake of Pol II in HSV-1 infection.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Immediate-Early Proteins , Humans , Histones/metabolism , Herpesvirus 1, Human/genetics , Transcription, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Herpes Simplex/genetics , Chromatin/genetics , Chromatin/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism
3.
J Virol ; 97(5): e0038123, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37093003

ABSTRACT

Herpes simplex virus 1 (HSV-1) infection exerts a profound shutoff of host gene expression at multiple levels. Recently, HSV-1 infection was reported to also impact promoter-proximal RNA polymerase II (Pol II) pausing, a key step in the eukaryotic transcription cycle, with decreased and increased Pol II pausing observed for activated and repressed genes, respectively. Here, we demonstrate that HSV-1 infection induces more complex alterations in promoter-proximal pausing than previously suspected for the vast majority of cellular genes. While pausing is generally retained, it is shifted to more downstream and less well-positioned sites for most host genes. The downstream shift of Pol II pausing was established between 1.5 and 3 h of infection, remained stable until at least 6 hours postinfection, and was observed in the absence of ICP22. The shift in Pol II pausing does not result from alternative de novo transcription initiation at downstream sites or read-in transcription originating from disruption of transcription termination of upstream genes. The use of downstream secondary pause sites associated with +1 nucleosomes was previously observed upon negative elongation factor (NELF) depletion. However, downstream shifts of Pol II pausing in HSV-1 infection were much more pronounced than observed upon NELF depletion. Thus, our study reveals a novel aspect in which HSV-1 infection fundamentally reshapes host transcriptional processes, providing new insights into the regulation of promoter-proximal Pol II pausing in eukaryotic cells. IMPORTANCE This study provides a genome-wide analysis of changes in promoter-proximal polymerase II (Pol II) pausing on host genes induced by HSV-1 infection. It shows that standard measures of pausing, i.e., pausing indices, do not properly capture the complex and unsuspected alterations in Pol II pausing occurring in HSV-1 infection. Instead of a reduction of pausing with increased elongation, as suggested by pausing index analysis, HSV-1 infection leads to a shift of pausing to downstream and less well-positioned sites than in uninfected cells for the majority of host genes. Thus, HSV-1 infection fundamentally reshapes a key regulatory step at the beginning of the host transcriptional cycle on a genome-wide scale.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Humans , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic
4.
Nature ; 609(7928): 829-834, 2022 09.
Article in English | MEDLINE | ID: mdl-36104565

ABSTRACT

RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.


Subject(s)
Cyclin-Dependent Kinases , Phosphoproteins , RNA Precursors , RNA Splicing , Ribonucleoprotein, U2 Small Nuclear , Spliceosomes , Chromatin/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Enzyme Activation/drug effects , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Quinolones/pharmacology , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/drug effects , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Spliceosomes/drug effects , Spliceosomes/metabolism , Threonine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...