Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 872
Filter
1.
Neural Regen Res ; 20(1): 159-173, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767484

ABSTRACT

Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.

2.
Article in English | MEDLINE | ID: mdl-39159305

ABSTRACT

The remediation of organic wastewater through advanced oxidation processes (AOPs) based on metal-free biochar/persulfate systems has been extensively researched. In this work, boron-doped alkali lignin biochar (BKC1:3) was utilized to activate peroxymonosulfate (PMS) for the removal of sulfamethazine (SMZ). The porous structure and substantial specific surface area of BKC1:3 facilitated the adsorption and thus degradation of SMZ. The XPS characterization and density functional theory (DFT) calculations demonstrated that -BCO2 was the main active site of BKC1:3, which dominated the occurrence of nonradical pathways. Neither quenching experiments nor EPR characterization revealed the generation of free radical signals. Compared with KC, BKC1:3 possessed more electron-rich regions. The narrow energy gap (ΔEgap = 1.87 eV) of BKC (-BCO2) promoted the electron transfer to the substable complex (BKC@PMS*) on SMZ, driving the electron transfer mechanism. In addition, the adsorption energy of BKC(-BCO2)@PMS was lower (-0.75 eV → -5.12 eV), implying a more spontaneous adsorption process. The O-O (PMS) bond length in BKC(-BCO2)@PMS increased significantly (1.412 Š→ 1.481 Å), which led to the easier decomposition of PMS during adsorption and facilitated the generation of 1O2. More importantly, a combination of Gaussian and LC-MS techniques was hypothesized regarding the attack sites and degradation intermediates of the active species in this system. The synergistic T.E.S.T software and toxicity tests predicted low or even no toxicity of the intermediates. Overall, this study proposed a strategy for the preparation of metal-free biochar, aiming to inspire ideas for the treatment of organic-polluted wastewater through advanced oxidation processes (AOPs).

3.
Chem Commun (Camb) ; 60(68): 9085-9088, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105671

ABSTRACT

We introduce free-standing FeS2/carbon microlattice composites as electrodes for lithium-ion batteries through 3D printing. The computer-aided design allows for any shape. The microlattice features aligned microchannels, promoting ion transfer, while the carbon skeleton facilitates electron transfer. Overall, this study shows 3D printing is highly promising in advancing sustainable energy applications.

4.
J Hazard Mater ; 478: 135333, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39116751

ABSTRACT

The synthesis of novel water-soluble polymers with biodegradability is an effective way to mitigate their negative environmental impacts. In this study, semi-aromatic copolyester poly(butylene succinate-co-butylene terephthalate) (PBST) with exceptional biodegradability is used as the resin matrix. Anionic sodium 1-3-isophthalate-5-sulfonate (SIPA) is introduced as a fourth monomer to prepare random poly(butylene succinate-co-butylene terephthalate-co-butylene 5-sodiosulfoisophthalate) (PBSTS) copolyesters by melt copolymerization. The incorporation of ionic groups enhances the hydrophilicity and water absorption of the copolyesters, resulting in water-soluble materials that exhibit ionic and temperature responsivity. Furthermore, the ionized biodegradable copolyesters demonstrate distinct pH-dependent degradation, which is accelerated at pH = 5.5 and 8.5 but inhibited at pH = 7.2. Degradation assessments in simulated body fluids reveal that the PBSTS copolyesters exhibit significant degradation in gastric fluids at pH = 1.5 with minimal degradation in intestinal fluids at pH = 6.8 and in body fluids at pH = 7.0. This unique degradation performance highlights the potential of these materials for addressing the challenges associated with selective drug delivery and localized controlled release in the human body.

9.
Angew Chem Int Ed Engl ; : e202412901, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141415

ABSTRACT

Electrochemical formic acid oxidation reaction (FAOR) is a pivotal model for understanding organic fuel oxidation and advancing sustainable energy technologies. Here, we present mechanistic insights into a novel molecular-like iridium catalyst (Ir-N4-C) for FAOR. Our studies reveal that isolated sites facilitate a preferential dehydrogenation pathway, circumventing catalyst poisoning and exhibiting high inherent activity. In-situ spectroscopic analyses elucidate that weakly adsorbed intermediates mediate the FAOR and are dynamically regulated by potential-dependent redox transitions. Theoretical and experimental investigations demonstrate a parallel mechanism involving two key intermediates with distinct pH and potential sensitivities. The rate-determining step is identified as the adsorption of formate via coupled or sequential proton-electron transfer, which aligns well with the observed kinetic properties, pH dependence, and hydrogen/deuterium isotope effects in experiments. These findings provide valuable insights into the reaction mechanism of FAOR, advancing our understanding at the molecular level and potentially guiding the design of efficient catalysts for fuel cells and electrolyzers.

11.
Medicine (Baltimore) ; 103(31): e39182, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093736

ABSTRACT

Coronavirus disease-2019 (COVID-19) has caused continuous effects on the global public, especially for susceptible and vulnerable populations like pregnant women. COVID-19-related studies and publications have shown blowout development, making it challenging to identify development trends and hot areas by using traditional review methods for such massive data. Aimed to perform a bibliometric analysis to explore the status and hotspots of COVID-19 in obstetrics. An online search was conducted in the Web of Science Core Collection (WOSCC) database from January 01, 2020 to November 31, 2022, using the following search expression: (((TS= ("COVID 19" OR "coronavirus 2019" OR "coronavirus disease 2019" OR "SARS-CoV-2" OR "2019-nCoV" OR "2019 novel coronavirus" OR "SARS coronavirus 2" OR "Severe Acute Respiratory Syndrome Coronavirus-2" OR "SARS-COV2")) AND TS= ("obstetric*" OR "pregnancy*" OR "pregnant" OR "parturition*" OR "puerperium"))). VOSviewer version 1.6.18, CiteSpace version 6.1.R6, R version 4.2.0, and Rstudio were used for the bibliometric and visualization analyses. 4144 articles were included in further analysis, including authors, titles, number of citations, countries, and author affiliations. The United States has contributed the most significant publications with the leading position. "Sahin, Dilek" has the largest output, and "Khalil, Asma" was the most influential author with the highest citations. Keywords of "Cov," "Experience," and "Neonate" with the highest frequency, and "Systematic Review" might be the new research hotspots and frontiers. The top 3 concerned genes included ACE2, CRP, and IL6. The new research hotspot is gradually shifting from the COVID-19 mechanism and its related clinical research to reviewing treatment options for pregnant women. This research uniquely delves into specific genes related to COVID-19's effects on obstetrics, a focus that has not been previously explored in other reviews. Our research enables clinicians and researchers to summarize the overall point of view of the existing literature and obtain more accurate conclusions.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Obstetrics , Pandemics , COVID-19/epidemiology , COVID-19/genetics , Bibliometrics , Obstetrics/trends , Humans , Female , Pregnancy , Angiotensin-Converting Enzyme 2/genetics , C-Reactive Protein/genetics , Interleukin-6/genetics
12.
Neural Netw ; 179: 106533, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39079378

ABSTRACT

The increasing size of pre-trained language models has led to a growing interest in model compression. Pruning and distillation are the primary methods employed to compress these models. Existing pruning and distillation methods are effective in maintaining model accuracy and reducing its size. However, they come with limitations. For instance, pruning is often suboptimal and biased by transforming it into a continuous optimization problem. Distillation relies primarily on one-to-one layer mappings for knowledge transfer, which leads to underutilization of the rich knowledge in teacher. Therefore, we propose a method of joint pruning and distillation for automatic pruning of pre-trained language models. Specifically, we first propose Gradient Progressive Pruning (GPP), which achieves a smooth transition of indicator vector values from real to binary by progressively converging the values of unimportant units' indicator vectors to zero before the end of the search phase. This effectively overcomes the limitations of traditional pruning methods while supporting compression with higher sparsity. In addition, we propose the Dual Feature Distillation (DFD). DFD adaptively globally fuses teacher features and locally fuses student features, and then uses the dual features of global teacher features and local student features for knowledge distillation. This realizes a "preview-review" mechanism that can better extract useful information from multi-level teacher information and transfer it to student. Comparative experiments on the GLUE benchmark dataset and ablation experiments indicate that our method outperforms other state-of-the-art methods.

13.
Heliyon ; 10(13): e33864, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39071607

ABSTRACT

Background: Rotor syndrome (RS, OMIM#237450) is an extremely rare autosomal digenic recessive disorder characterized by mild non-hemolytic hereditary conjugated hyperbilirubinemia, caused by biallelic variation of SLCO1B1 and SLCO1B3 genes that resulted in OATP1B1/B3 dysfunction in the sinusoidal membrane leading to impaired bilirubin reuptake ability of hepatocytes. Methods: One RS pedigree was recruited and clinical features were documented. Whole genome second-generation sequencing was used to screen candidate genes and mutations, Sanger sequencing confirmed predicted mutations. Results: This study detected a homozygous nonsense variant c.1738C > T (p.R580*) in the coding region of the SLCO1B1 (NM006446) gene in a family with RS and hepatitis B virus infection by Variants analysis and Sanger sequencing, and confirmed by Copy Number Variation (CNV) analysis and Long Range PCR that there was a homozygous insertion of intron 5 of the SLCO1B3 gene into intron 5 of long-interspersed element 1 (LINE1). A few cases of such haplotypes have been reported in East Asian populations. A hepatitis B virus infection with fatty liver disease was indicated by pathology, which revealed mild-moderate lobular inflammation, moderate lobular inflammation, moderate hepatocellular steatosis, and fibrosis stage 1-2 (NAS score: 4 points/S1-2) alterations. Heterozygotes carrying p.R580* and LINE1 insertions were also detected in family members (I1, I2, III2, III3), but they did not develop conjugated hyperbilirubinemia. Conclusion: The mutations may be the molecular genetic foundation for the presence of SLCO1B1 c.1738C > T(p.R580*) and SLCO1B3 (LINE1) in this RS pedigree.

14.
Anal Chim Acta ; 1318: 342953, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39067928

ABSTRACT

BACKGROUND: Developing biosensors with antifouling properties is essential for accurately detecting low-concentration biomarkers in complex biological matrix, which is imperative for effective disease diagnosis and treatment. Herein, an antifouling electrochemical aptasensor qualifying for probing targets in human serum was explored based on newly-devised peptides that could form inverted U-shaped structures with long-term stability. RESULTS: The inverted U-shaped peptides (U-Pep) with two terminals of thiol groups grafted onto the Au-modified electrode showcase superior antifouling properties in terms of high stability against enzymatic hydrolysis and long acting against biofouling in actual biofluids. The construction of the outlined antifouling electrochemical aptasensor just involved the fabrication of Au-deposited poly(3,4 ethylenedioxythiophene) (Au/PEDOT) modified electrode, followed by one-step co-incubation in the peptides and the aptamer probes with the Au/PEDOT electrode. Taking a typical biomarker of alpha-fetoprotein (AFP) for detection, this elegant antifouling aptasenor demonstrated a nice response for probing the target AFP with a low detection limit of 0.27 pg/mL and a wide linear scope of 1.0 pg/mL to 1.0 µg/mL, and furthermore qualified for assaying of AFP in human serum samples with satisfactory accuracy and feasibility. SIGNIFICANCE: This engineering strategy of U-Pep with long-lasting antifouling efficacy opens a new horizon for high-performance antifouling biosensors suitable for detection in complex bifluids, and it could spark more inspiration for a follow-up exploration of other featured antifouling biomaterials.


Subject(s)
Aptamers, Nucleotide , Biofouling , Biosensing Techniques , Electrochemical Techniques , Gold , Peptides , Humans , Biosensing Techniques/methods , Peptides/chemistry , Gold/chemistry , Aptamers, Nucleotide/chemistry , Biofouling/prevention & control , Electrodes , Polymers/chemistry , alpha-Fetoproteins/analysis , Limit of Detection , Bridged Bicyclo Compounds, Heterocyclic
15.
Curr Oncol ; 31(7): 4105-4122, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39057178

ABSTRACT

In this study, we investigated the prevalence of mental health problems among patients with cancer and whether oncology nurse navigation improved their mental health outcomes and medical experience. In this randomized controlled clinical trial, we recruited 128 outpatients with cancer via purposive sampling from a teaching hospital in northern Taiwan. Participants were randomly assigned to the navigation group (N = 61) or the usual care group (N = 67). Data were collected from January 2019 to July 2020 using questionnaires, including the self-reported Distress Thermometer, Hospital Anxiety and Depression Scale, Demoralization Scale, and Patient Assessment of Chronic Illness Care. Data were collected at baseline and after three and six months of the intervention. Descriptive and analytical statistical analyses were performed. The prevalence rates of anxiety, depression, distress, and demoralization were 17.9%, 15.7%, 29.7%, and 29.7%, respectively. After three months, the participants in the navigation group exhibited significantly reduced levels of anxiety, demoralization, and emotional distress (reduced by 92%, 75%, and 58%, respectively) and reported a better medical experience (odds ratio = 1.40) than those in the usual care group.


Subject(s)
Neoplasms , Oncology Nursing , Humans , Female , Male , Taiwan , Neoplasms/psychology , Middle Aged , Oncology Nursing/methods , Mental Health , Anxiety , Patient Navigation , Adult , Aged , Depression
16.
Angew Chem Int Ed Engl ; : e202409179, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004946

ABSTRACT

Crystalline red phosphorus(CRP), known for its promising photocatalytic properties, faces challenges in photocatalytic hydrogen evolution(PHE) due to undesired inherent charge deep trapping and recombination effects induced by defects. This study overcomes these limitations through an innovative strategy in integrating ruthenium single atoms(Ru1) within CRP to simultaneously repair the intrinsic undesired vacancy defects and serve as the uniformly distributed anchoring sites for a controllable growth into ruthenium nanoparticles(RuNP). Hence, a highly functionalized CRP with Ru1 and RuNP(Ru1-NP/CRP) with concerted effects in regulating electronic structures and promoting interfacial charge transfer has been achieved. Advanced characterizations unveil the pioneering dual role of pre-anchored Ru1 in transforming CRP photocatalysis. The regulations of vacancy defects on the surface of CRP minimize the detrimental deep charge trapping, resulting in the prolonged lifetime of charges. With the well-distributed in-situ growth of RuNP on Ru1 sites, the constructed robust "bridge" that connects CRP and RuNP facilitates constructive interfacial charge transfer. Ultimately, the synergistic effect induced by the pre-anchored Ru1 endows Ru1-NP/CRP with an exceptional PHE rate of 3175µmolh-1g-1, positioning it as one of the most efficient elemental-based photocatalysts. This breakthrough underscores the crucial role of pre-anchoring metal single atoms at defect sites of catalysts in enhancing hydrogen production.

17.
Sci Rep ; 14(1): 16830, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039227

ABSTRACT

Two important factors affecting the progress of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the S-protein binding function of ACE2 receptors and the membrane fluidity of host cells. This study aimed to evaluate the effect of static magnetic field (SMF) on S-protein/ACE2 binding and cellular membrane fluidity of lung cells, and was performed in vitro using a Calu-3 cell model and in vivo using an animal model. The ability of ACE2 receptors to bind to SARS-CoV-2 spike protein on host cell surfaces under SMF stimulation was evaluated using fluorescence images. Host lung cell membrane fluidity was tested using fluorescence polarization to determine the effects of SMF. Our results indicate that 0.4 T SMF can affect binding between S-protein and ACE2 receptors and increase Calu-3 cell membrane fluidity, and that SMF exposure attenuates LPS-induced alveolar wall thickening in mice. These results may be of value for developing future non-contact, non-invasive, and low side-effect treatments to reduce disease severity in COVID-19-invaded lungs.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Lung , Membrane Fluidity , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/therapy , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Lung/pathology , Lung/metabolism , Mice , Humans , Magnetic Fields , Cell Line , Disease Models, Animal , Protein Binding
18.
Fitoterapia ; 177: 106142, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067487

ABSTRACT

The investigation of the leaves of Pittosporum elevaticostatum Chang et Yan led to the isolation of fifteen pentacyclic triterpenoids (1-15), including five previously undescribed ones (1-5), and nine others (16-24). The structures of compounds 1-5 were elucidated based on comprehensive spectroscopic techniques, including one dimension (1D) and 2D nuclear magnetic resonance (NMR), high resolution electrospray ionization mass spectroscopy (HR-ESI-MS), and other methods. Compounds 2 and 13 demonstrated significant inhibitory activity against Listeria monocytogenes (L. monocytogenes) with minimum inhibitory concentration (MIC) values of 32 µM. Scanning electron microscopy (SEM) observations revealed insights into the antibacterial mechanism, indicating that compounds 2 and 13 either prevent biofilm formation of dispersed the preformed cell membranes. Additionally, compounds 1, 5, 7, and 12 exhibited anti-inflammatory activity on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells with IC50 values ranging from 11.27 to 17.80 µM.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Listeria monocytogenes , Microbial Sensitivity Tests , Pentacyclic Triterpenes , Plant Leaves , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Mice , Animals , Listeria monocytogenes/drug effects , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Microglia/drug effects , Cell Line , China
19.
Diagn Microbiol Infect Dis ; 110(1): 116351, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896891

ABSTRACT

BACKGROUND: Infection with Neisseria gonorrhoeae in adults usually leads to vaginitis and acute urethritis, and infection through the birth canal in newborns can lead to acute neonatal conjunctivitis. In view of certain factors such as a high missed detection rate of N.gonorrhoeae from staining microscopy method, the time-consuming nature and limited sensitivity of bacterial culture method, complicated and inability of absolute quantification from the ordinary PCR method. METHODS: This study aims to establish a ddPCR system to detect N.gonorrhoeae in a absolute quantification, high specificity, high stability and accurate way. We selected the pgi1 gene as the target gene for the detection of N.gonorrhoeae. RESULTS: The amplification efficiency was good in the ddPCR reaction, and the whole detection process could be completed in 94 min. It has a high sensitivity of up to 5.8 pg/µL. With a high specificity, no positive microdroplets were detected in 9 negative control pathogens in this experiment. In addition, ddPCR detection of N.gonorrhoeae has good repeatability, and the calculated CV is 4.2 %. CONCLUSIONS: DdPCR detection technology has the characteristics of absolute quantification, high stability, high specificity and high accuracy of N.gonorrhoeae. It can promote the accuracy of the detecting of N.gonorrhoeae, providing a more scientific basis for clinical diagnosis and treatment.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Polymerase Chain Reaction , Sensitivity and Specificity , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/isolation & purification , Humans , Gonorrhea/diagnosis , Gonorrhea/microbiology , Polymerase Chain Reaction/methods , Female , Reproducibility of Results , DNA, Bacterial/genetics , Molecular Diagnostic Techniques/methods
20.
Nanoscale ; 16(26): 12274-12286, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38847575

ABSTRACT

Hierarchical porous carbon is an area of advanced materials that plays a pivotal role in meeting the increasing demands across various industry sectors including catalysis, adsorption, and energy storage and conversion. Additive manufacturing is a promising technique to synthesize architectured porous carbon with exceptional design flexibility, guided by computer-aided precision. This review paper aims to provide an overview of porous carbon derived from various additive manufacturing techniques, including material extrusion, vat polymerization, and powder bed fusion. The respective advantages and limitations of these techniques will be examined. Some exemplary work on various applications will be showcased. Furthermore, perspectives on future research directions, opportunities, and challenges of additive manufacturing for porous carbon will also be offered.

SELECTION OF CITATIONS
SEARCH DETAIL