Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Res ; 200(6): 587-592, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37990957

ABSTRACT

Medulloblastoma is the most common malignant brain tumor of children. Although standard of care radiotherapy for pediatric medulloblastoma (PM) can lead to long-term remission or cure in many patients, it can also cause life-long cognitive impairment and other adverse effects. The pathophysiological mechanisms involved in radiation-induced cerebral damage are incompletely understood, and their elucidation may lead to interventions that mitigate radiation toxicity. To explore the mechanisms of radiation-induced cerebral damage, transgenic mouse models of PM and non-tumor-bearing controls were exposed to radiation doses that ranged from 0 to 30 Gy. Between 0-20 Gy, a significant dose-dependent reduction in tumor-associated hydrocephalus and increase in overall survival were observed. However, at 30 Gy, hydrocephalus incidence increased and median overall survival fell to near-untreated levels. Immunohistochemistry revealed that both tumor-bearing and non-tumor-bearing mice treated with 30 Gy of radiation had significantly more reactive astrocytes and microvascular damage compared to untreated controls. This effect was persistent across mice that were given 1 and 2 weeks of recovery time after irradiation. Our data suggest that radiation therapy promotes neural death by inducing long-term neuroinflammation in PM, suggesting radiation delivery methods that limit inflammation may be effective at widening the therapeutic window of radiation therapy in PM patients.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Hydrocephalus , Medulloblastoma , Radiation Injuries , Humans , Child , Mice , Animals , Medulloblastoma/genetics , Medulloblastoma/radiotherapy , Brain Neoplasms/radiotherapy , Radiation Injuries/etiology , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/radiotherapy , Cerebellar Neoplasms/complications , Hydrocephalus/complications
2.
bioRxiv ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37904990

ABSTRACT

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

3.
STAR Protoc ; 4(1): 102094, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853662

ABSTRACT

Genetically engineered mice are commonly used to model brainstem gliomas in pre-clinical research. One technique for inducing primary tumors in these genetically engineered mice involves delivering viral vectors containing the code for gene-editing proteins. We present a protocol for generating primary brainstem gliomas using the RCAS-TVA retroviral delivery system and the Cre/loxP gene editing system. We describe steps for transfecting and harvesting chicken fibroblast cells, intracranially injecting cells into mice, imaging primary tumors, and treating primary tumors with focal, image-guided brain irradiation. For complete details on the use and execution of this protocol, please refer to Deland et al. (2021).1.


Subject(s)
Brain Stem Neoplasms , Glioma , Mice , Animals , Retroviridae/genetics , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...