Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 14(9): e15687, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35919953

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL-17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store-operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL-2, IL-4, IL-6, IL-17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL-6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell-specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2-deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.


Subject(s)
Calcium Release Activated Calcium Channels , Inflammatory Bowel Diseases , Animals , CD8-Positive T-Lymphocytes/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Humans , Immunity, Innate , Interleukin-17/metabolism , Interleukin-6/metabolism , Mice , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Th17 Cells/metabolism
2.
Curr Biol ; 29(19): 3266-3276.e3, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31564496

ABSTRACT

The circadian clock is a timekeeper but also helps adapt physiology to the outside world. This is because an essential feature of clocks is their ability to adjust (entrain) to the environment, with light being the most important signal. Whereas cryptochrome-mediated entrainment is well understood in Drosophila, integration of light information via the visual system lacks a neuronal or molecular mechanism. Here, we show that a single photoreceptor subtype is essential for long-day adaptation. These cells activate key circadian neurons, namely the large ventral-lateral neurons (lLNvs), which release the neuropeptide pigment-dispersing factor (PDF). RNAi and rescue experiments show that PDF from these cells is necessary and sufficient for delaying the timing of the evening (E) activity in long-day conditions. This contrasts to PDF that derives from the small ventral-lateral neurons (sLNvs), which are essential for constant darkness (DD) rhythmicity. Using a cell-specific CRISPR/Cas9 assay, we show that lLNv-derived PDF directly interacts with neurons important for E activity timing. Interestingly, this pathway is specific for long-day adaptation and appears to be dispensable in equinox or DD conditions. The results therefore indicate that external cues cause a rearrangement of neuronal hierarchy, which contributes to behavioral plasticity.


Subject(s)
Circadian Clocks/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Neurons/physiology , Neuropeptides/genetics , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Neuropeptides/metabolism , RNA Interference
3.
Appl Environ Microbiol ; 74(12): 3739-44, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18441107

ABSTRACT

Antimicrobial hand soaps provide a greater bacterial reduction than nonantimicrobial soaps. However, the link between greater bacterial reduction and a reduction of disease has not been definitively demonstrated. Confounding factors, such as compliance, soap volume, and wash time, may all influence the outcomes of studies. The aim of this work was to examine the effects of wash time and soap volume on the relative activities and the subsequent transfer of bacteria to inanimate objects for antimicrobial and nonantimicrobial soaps. Increasing the wash time from 15 to 30 seconds increased reduction of Shigella flexneri from 2.90 to 3.33 log(10) counts (P = 0.086) for the antimicrobial soap, while nonantimicrobial soap achieved reductions of 1.72 and 1.67 log(10) counts (P > 0.6). Increasing soap volume increased bacterial reductions for both the antimicrobial and the nonantimicrobial soaps. When the soap volume was normalized based on weight (approximately 3 g), nonantimicrobial soap reduced Serratia marcescens by 1.08 log(10) counts, compared to the 3.83-log(10) reduction caused by the antimicrobial soap (P < 0.001). The transfer of Escherichia coli to plastic balls following a 15-second hand wash with antimicrobial soap resulted in a bacterial recovery of 2.49 log(10) counts, compared to the 4.22-log(10) (P < 0.001) bacterial recovery on balls handled by hands washed with nonantimicrobial soap. This indicates that nonantimicrobial soap was less active and that the effectiveness of antimicrobial soaps can be improved with longer wash time and greater soap volume. The transfer of bacteria to objects was significantly reduced due to greater reduction in bacteria following the use of antimicrobial soap.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/growth & development , Disinfection/methods , Hand Disinfection/methods , Hand/microbiology , Soaps/pharmacology , Adolescent , Adult , Anti-Bacterial Agents/administration & dosage , Colony Count, Microbial , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Middle Aged , Serratia marcescens/drug effects , Serratia marcescens/growth & development , Shigella flexneri/drug effects , Shigella flexneri/growth & development , Soaps/administration & dosage , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...