Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 21(16): 3373-3380, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37013457

ABSTRACT

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to many ß-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by S. aureus. We recently disclosed 3,4'-dimethoxyflavone as a selective ArlRS inhibitor. In this study we explore the structure-activity relationship (SAR) of the flavone scaffold for ArlRS inhibition and identify several compounds with increased activity compared to the parent. Additionally, we identify a compound that suppresses oxacillin resistance in MRSA, and begin to probe the mechanism of action behind this activity.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Structure-Activity Relationship , Microbial Sensitivity Tests
2.
RSC Med Chem ; 12(2): 293-296, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-34046617

ABSTRACT

Infections that stem from bacterial biofilms are difficult to eradicate. Within a biofilm state, bacteria are upwards of 1000-fold more resistant to conventional antibiotics, necessitating the development of alternative approaches to treat biofilm-based infections. One such approach is the development of small molecule adjuvants that can inhibit/disrupt bacterial biofilms. When such molecules are paired with conventional antibiotics, these dual treatments present a combination approach to eradicate biofilm-based infections. Previously, we have demonstrated that small molecules containing either a 2-amino pyrimidine (2-AP) or a 2-aminoimidazole (2-AI) heterocycle are potent anti-biofilm agents. Herein, we now report a scaffold hopping strategy to generate new aryl 2-AP analogs that inhibit biofilm formation by methicillin-resistant Staphylococcus aureus (MRSA). These molecules also suppress colistin resistance in colistin resistant Klebsiella pneumoniae, lowering the minimum inhibitory concentration (MIC) by 32-fold.

3.
ACS Med Chem Lett ; 11(9): 1723-1731, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32944140

ABSTRACT

Approximately 1.7 million Americans develop hospital associated infections each year, resulting in more than 98,000 deaths. One of the main contributors to such infections is the Gram-negative pathogen Acinetobacter baumannii. Recently, it was reported that aryl 2-aminoimidazole (2-AI) compounds potentiate macrolide antibiotics against a highly virulent strain of A. baumannii, AB5075. The two lead compounds in that report increased clarithromycin (CLR) potency against AB5075 by 16-fold, lowering the minimum inhibitory concentration (MIC) from 32 to 2 µg/mL at a concentration of 10 µM. Herein, we report a structure-activity relationship study of a panel of derivatives structurally inspired by the previously reported aryl 2-AI leads. Substitutions around the core phenyl ring yielded a lead that potentiates clarithromycin by 64- and 32-fold against AB5075 at 10 and 7.5 µM, exceeding the dose response of the original lead. Additional probing of the amide linker led to the discovery of two urea containing adjuvants that suppressed clarithromycin resistance in AB5075 by 64- and 128-fold at 7.5 µM. Finally, the originally reported adjuvant was tested for its ability to suppress the evolution of resistance to clarithromycin over the course of nine consecutive days. At 30 µM, the parent compound reduced the CLR MIC from 512 to 2 µg/mL, demonstrating that the original lead remained active against a more CLR resistant strain of AB5075.

4.
Bioorg Med Chem Lett ; 30(23): 127550, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32927027

ABSTRACT

Synthesis of novel 4(3H)-quinazolinonyl aminopyrimidine derivatives has been achieved via quinazolinonyl enones which in turn were obtained from 2-acyl-4(3H)-quinazolinone. They have been assayed for biofilm inhibition against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative bacteria (Acinetobacter baumannii). The analogues with 2,4,6-trimethoxy phenyl, 4-methylthio phenyl, and 3-bromo phenyl substituents (5h, 5j & 5k) have been shown to inhibit biofilm formation efficiently in MRSA with IC50 values of 20.7-22.4 µM). The analogues 5h and 5j have demonstrated low toxicity in human cells in vitro and can be investigated further as leads.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pyrimidines/pharmacology , Quinazolinones/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/physiology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Cell Line , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/toxicity , Quinazolinones/chemical synthesis , Quinazolinones/toxicity , Structure-Activity Relationship
5.
ChemMedChem ; 15(2): 210-218, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31756025

ABSTRACT

Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics. We recently disclosed that the known IKK-ß inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this study, we explore the structure-activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin-resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae.


Subject(s)
Acinetobacter baumannii/drug effects , Adjuvants, Pharmaceutic/pharmacology , Anti-Bacterial Agents/pharmacology , Benzamides/pharmacology , Klebsiella pneumoniae/drug effects , Adjuvants, Pharmaceutic/chemical synthesis , Adjuvants, Pharmaceutic/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Colistin/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...