Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1218193, 2023.
Article in English | MEDLINE | ID: mdl-37409006

ABSTRACT

Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a 6 h advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, a circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.

2.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205532

ABSTRACT

Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a six hour advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, an SCN-independent circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.

3.
Drug Dev Res ; 81(2): 194-205, 2020 04.
Article in English | MEDLINE | ID: mdl-32022298

ABSTRACT

Diabetes disrupts organs throughout the body including the brain. Evidence suggests diabetes is a risk factor for Alzheimer's disease (AD) and neurodegeneration. In this review, we focus on understanding how diabetes contributes to the progression of neurodegeneration by influencing several aspects of the disease process. We emphasize the potential roles of brain insulin resistance, as well as cholesterol and lipid disruption, as factors which worsen AD.


Subject(s)
Alzheimer Disease/etiology , Diabetes Complications/psychology , Diabetes Mellitus/metabolism , Alzheimer Disease/metabolism , Diabetes Complications/metabolism , Disease Progression , Humans , Insulin Resistance , Lipid Metabolism
4.
J Neurosci ; 39(28): 5594-5605, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31085604

ABSTRACT

Chronic social defeat (CSD) in male mice can produce anxiety and aberrant socialization. Animals susceptible to CSD show activation of microglia, which have elevated levels of oxidative stress markers. We hypothesized that microglia and reactive oxygen species (ROS) production contribute to the CSD stress-induced changes in affective behavior. First, we selectively depleted microglia (99%) by administering the CSF1R (colony-stimulating factor 1 receptor) antagonist PLX5622 before and during the 14 d CSD procedure. Microglia-depleted mice in contrast to nondepleted mice were protected from the stress effects measured by light/dark and social interaction tests. ROS production, measured histochemically following dihydroethidium administration, was elevated by CSD, and the production was reduced to basal levels in mice lacking microglia. The deleterious stress effects were also blocked in nondepleted mice by continuous intracerebral administration of N-acetylcysteine (NAC), a ROS inhibitor. In a second experiment, at the end of the CSD period, PLX5622 was discontinued to allow microglial repopulation. After 14 d, the brain had a full complement of newly generated microglia. At this time, the mice that had previously been protected now showed behavioral deficits, and their brain ROS production was elevated, both in all brain cells and in repopulated microglia. NAC administration during repopulation prevented the behavioral decline in the repopulated mice, and it supported behavioral recovery in nondepleted stressed mice. The data suggest that microglia drive elevated ROS production during and after stress exposure. This elevated ROS activity generates a central state supporting dysregulated affect, and it hinders the restoration of behavioral and neurochemical homeostasis after stress cessation.SIGNIFICANCE STATEMENT Chronic psychosocial stress is associated with psychiatric disorders such as depression and anxiety. Understanding the details of CNS cellular contributions to stress effects could lead to the development of intervention strategies. Inflammation and oxidative stress are positively linked to depression severity, but the cellular nature of these processes is not clear. The chronic social defeat (CSD) paradigm in mice produces mood alterations and microglial activation characterized by elevated reactive oxygen species (ROS) production. The depletion of microglia or ROS inhibition prevented adverse stress effects. Microglial repopulation of the brain post-CSD reintroduced adverse stress effects, and ROS inhibition in this phase protected against the effects. The results suggest that stress-induced microglial ROS production drives a central state that supports dysregulated affective behavior.


Subject(s)
Microglia/metabolism , Oxidative Stress , Social Behavior , Stress, Psychological/metabolism , Acetylcysteine/pharmacology , Animals , Antioxidants/pharmacology , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Organic Chemicals/toxicity , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
5.
Neuronal Signal ; 3(4): NS20190068, 2019 12.
Article in English | MEDLINE | ID: mdl-32269839

ABSTRACT

Type 2 diabetes is associated with adverse central nervous system effects, including a doubled risk for Alzheimer's disease (AD) and increased risk of cognitive impairment, but the mechanisms connecting diabetes to cognitive decline and dementia are unknown. One possible link between these diseases may be the associated alterations to cholesterol oxidation and metabolism in the brain. We will survey evidence demonstrating alterations to oxysterols in the brain in AD and diabetes and how these oxysterols could contribute to pathology, as well as identifying research questions that have not yet been addressed to allow for a fuller understanding of the role of oxysterols in AD and diabetes.

6.
J Immunol ; 201(3): 845-850, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29967099

ABSTRACT

Recent studies suggest that autism is often associated with dysregulated immune responses and altered microbiota composition. This has led to growing speculation about potential roles for hyperactive immune responses and the microbiome in autism. Yet how microbiome-immune cross-talk contributes to neurodevelopmental disorders currently remains poorly understood. In this study, we report critical roles for prenatal microbiota composition in the development of behavioral abnormalities in a murine maternal immune activation (MIA) model of autism that is driven by the viral mimetic polyinosinic-polycytidylic acid. We show that preconception microbiota transplantation can transfer susceptibility to MIA-associated neurodevelopmental disease and that this is associated with modulation of the maternal immune response. Furthermore, we find that ablation of IL-17a signaling provides protection against the development of neurodevelopmental abnormalities in MIA offspring. Our findings suggest that microbiota landscape can influence MIA-induced neurodevelopmental disease pathogenesis and that this occurs as a result of microflora-associated calibration of gestational IL-17a responses.


Subject(s)
Autistic Disorder/immunology , Autistic Disorder/microbiology , Immune System/immunology , Microbiota/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Disease Models, Animal , Female , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Poly I-C/immunology , Pregnancy , Prenatal Exposure Delayed Effects/microbiology
7.
Sci Rep ; 8(1): 11240, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050134

ABSTRACT

An animal's ability to cope with or succumb to deleterious effects of chronic psychological stress may be rooted in the brain's immune responses manifested in microglial activity. Mice subjected to chronic social defeat (CSD) were categorized as susceptible (CSD-S) or resilient (CSD-R) based on behavioral phenotyping, and their microglia were isolated and analyzed by microarray. Microglia transcriptomes from CSD-S mice were enriched for pathways associated with inflammation, phagocytosis, oxidative stress, and extracellular matrix remodeling. Histochemical experiments confirmed the array predictions: CSD-S microglia showed elevated phagocytosis and oxidative stress, and the brains of CSD-S but not CSD-R or non-stressed control mice showed vascular leakage of intravenously injected fluorescent tracers. The results suggest that the inflammatory profile of CSD-S microglia may be precipitated by extracellular matrix degradation, oxidative stress, microbleeds, and entry and phagocytosis of blood-borne substances into brain parenchyma. We hypothesize that these CNS-centric responses contribute to the stress-susceptible behavioral phenotype.


Subject(s)
Blood-Brain Barrier/physiopathology , Microglia/immunology , Microglia/pathology , Stress, Psychological/physiopathology , Animals , Behavior, Animal , Gene Expression Profiling , Immunohistochemistry , Mice , Microarray Analysis
8.
Sci Rep ; 7: 46548, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28418035

ABSTRACT

The medial prefrontal cortex (mPFC) plays a key role in top-down control of the brain's stress axis, and its structure and function are particularly vulnerable to stress effects, which can lead to depression in humans and depressive-like states in animals. We tested whether chronic social defeat produces structural alterations in the mPFC in mice. We first performed a microarray analysis of mPFC gene expression changes induced by defeat, and biological pathway analysis revealed a dominant pattern of down-regulation of myelin-associated genes. Indeed, 69% of the most significantly down-regulated genes were myelin-related. The down regulation was confirmed by in situ hybridization histochemistry for two strongly down-regulated genes, myelin oligodendrocyte glycoprotein (Mog) and ermin (Ermn), and by immunohistochemistry for myelin basic protein. To test for stress-induced changes in myelin integrity, aurophosphate (Black Gold) myelin staining was performed on mPFC sections. Quantitative stereologic analysis showed reduced myelinated fiber length and density. Behavioral analysis confirmed that the 14-day social defeat sessions resulted in induction of depressive-like states measured in social interaction and light/dark tests. The combined data suggest that chronic social defeat induces molecular changes that reduce myelination of the prefrontal cortex, which may be an underlying basis for stress-induced depressive states.


Subject(s)
Myelin Sheath/metabolism , Myelin Sheath/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Stress, Psychological/metabolism , Stress, Psychological/pathology , Animals , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL