Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Genet ; 9(5): e200093, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37588275

ABSTRACT

Background and Objectives: Pathogenic variants in the valosin-containing protein (VCP) gene cause a phenotypically heterogeneous disorder that includes myopathy, motor neuron disease, Paget disease of the bone, frontotemporal dementia, and parkinsonism termed multisystem proteinopathy. This hallmark pleiotropy makes the classification of novel VCP variants challenging. This retrospective study describes and assesses the effect of 19 novel or nonpreviously clinically characterized VCP variants identified in 28 patients (26 unrelated families) in the retrospective VCP International Multicenter Study. Methods: A 6-item clinical score was developed to evaluate the phenotypic level of evidence to support the pathogenicity of the novel variants. Each item is allocated a value, a score ranging from 0.5 to 5.5 points. A receiver-operating characteristic curve was used to identify a cutoff value of 3 to consider a variant as high likelihood disease associated. The scoring system results were confronted with results of in vitro ATPase activity assays and with in silico analysis. Results: All variants were missense, except for one small deletion-insertion, 18 led to amino acid changes within the N and D1 domains, and 13 increased the enzymatic activity. The clinical score coincided with the functional studies in 17 of 19 variants and with the in silico analysis in 12 of 19. For 12 variants, the 3 predictive tools agreed, and for 7 variants, the predictive tools disagreed. The pooled data supported the pathogenicity of 13 of 19 novel VCP variants identified in the study. Discussion: This study provides data to support pathogenicity of 14 of 19 novel VCP variants and provides guidance for clinicians in the evaluation of novel variants in the VCP gene.

2.
Ann Clin Transl Neurol ; 10(5): 686-695, 2023 05.
Article in English | MEDLINE | ID: mdl-37026610

ABSTRACT

Valosin-containing protein (VCP)-associated multisystem proteinopathy (MSP) is a rare genetic disorder with abnormalities in the autophagy pathway leading to various combinations of myopathy, bone diseases, and neurodegeneration. Ninety percent of patients with VCP-associated MSP have myopathy, but there is no consensus-based guideline. The goal of this working group was to develop a best practice set of provisional recommendations for VCP myopathy which can be easily implemented across the globe. As an initiative by Cure VCP Disease Inc., a patient advocacy organization, an online survey was initially conducted to identify the practice gaps in VCP myopathy. All prior published literature on VCP myopathy was reviewed to better understand the different aspects of management of VCP myopathy, and several working group sessions were conducted involving international experts to develop this provisional recommendation. VCP myopathy has a heterogeneous clinical phenotype and should be considered in patients with limb-girdle muscular dystrophy phenotype, or any myopathy with an autosomal dominant pattern of inheritance. Genetic testing is the only definitive way to diagnose VCP myopathy, and single-variant testing in the case of a known familial VCP variant, or multi-gene panel sequencing in undifferentiated cases can be considered. Muscle biopsy is important in cases of diagnostic uncertainty or lack of a definitive pathogenic genetic variant since rimmed vacuoles (present in ~40% cases) are considered a hallmark of VCP myopathy. Electrodiagnostic studies and magnetic resonance imaging can also help rule out disease mimics. Standardized management of VCP myopathy will optimize patient care and help future research initiatives.


Subject(s)
Muscular Diseases , Muscular Dystrophies, Limb-Girdle , Proteostasis Deficiencies , Humans , Valosin Containing Protein/genetics , Muscular Diseases/diagnosis , Muscular Diseases/genetics , Muscular Diseases/therapy , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/therapy , Phenotype
3.
Am J Physiol Endocrinol Metab ; 303(8): E983-93, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22895779

ABSTRACT

Hyperammonemia and sarcopenia (loss of skeletal muscle) are consistent abnormalities in cirrhosis and portosystemic shunting. We have shown that muscle ubiquitin-proteasome components are not increased with hyperammonemia despite sarcopenia. This suggests that an alternative mechanism of proteolysis contributes to sarcopenia in cirrhosis. We hypothesized that autophagy could be this alternative pathway since we observed increases in classic autophagy markers, increased LC3 lipidation, beclin-1 expression, and p62 degradation in immunoblots of skeletal muscle protein in cirrhotic patients. We observed similar changes in these autophagy markers in the portacaval anastamosis (PCA) rat model. To determine the mechanistic relationship between hyperammonemia and autophagy, we exposed murine C(2)C(12) myotubes to ammonium acetate. Significant increases in LC3 lipidation, beclin-1 expression, and p62 degradation occurred by 1 h, whereas autophagy gene expression (LC3, Atg5, Atg7, beclin-1) increased at 24 h. C(2)C(12) cells stably expressing GFP-LC3 or GFP-mCherry-LC3 constructs showed increased formation of mature autophagosomes supported by electron microscopic studies. Hyperammonemia also increased autophagic flux in mice, as quantified by an in vivo autophagometer. Because hyperammonemia induces nitration of proteins in astrocytes, we quantified global muscle protein nitration in cirrhotic patients, in the PCA rat, and in C(2)C(12) cells treated with ammonium acetate. Increased protein nitration was observed in all of these systems. Furthermore, colocalization of nitrated proteins with GFP-LC3-positive puncta in hyperammonemic C(2)C(12) cells suggested that autophagy is involved in degradation of nitrated proteins. These observations show that increased skeletal muscle autophagy in cirrhosis is mediated by hyperammonemia and may contribute to sarcopenia of cirrhosis.


Subject(s)
Autophagy/physiology , Hyperammonemia/pathology , Liver Cirrhosis/pathology , Muscle, Skeletal/pathology , Sarcopenia/pathology , Animals , Cell Line , Cells, Cultured , Fluorescent Antibody Technique , Humans , Hydrogen-Ion Concentration , Male , Mice , Microscopy, Confocal , Microscopy, Electron , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Muscle Proteins/metabolism , Portacaval Shunt, Surgical , Proteasome Endopeptidase Complex/metabolism , RNA/biosynthesis , RNA/genetics , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Transfection , Tyrosine/analogs & derivatives , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...