Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2312587121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381785

ABSTRACT

To ensure a robust immune response to pathogens without risking immunopathology, the kinetics and amplitude of inflammatory gene expression in macrophages need to be exquisitely well controlled. There is a growing appreciation for stress-responsive membraneless organelles (MLOs) regulating various steps of eukaryotic gene expression in response to extrinsic cues. Here, we implicate the nuclear paraspeckle, a highly ordered biomolecular condensate that nucleates on the Neat1 lncRNA, in tuning innate immune gene expression in murine macrophages. In response to a variety of innate agonists, macrophage paraspeckles rapidly aggregate (0.5 h poststimulation) and disaggregate (2 h poststimulation). Paraspeckle maintenance and aggregation require active transcription and MAPK signaling, whereas paraspeckle disaggregation requires degradation of Neat1 via the nuclear RNA exosome. In response to lipopolysaccharide treatment, Neat1 KO macrophages fail to properly express a large cohort of proinflammatory cytokines, chemokines, and antimicrobial mediators. Consequently, Neat1 KO macrophages cannot control replication of Salmonella enterica serovar Typhimurium or vesicular stomatitis virus. These findings highlight a prominent role for MLOs in orchestrating the macrophage response to pathogens and support a model whereby dynamic assembly and disassembly of paraspeckles reorganizes the nuclear landscape to enable inflammatory gene expression following innate stimuli.


Subject(s)
Paraspeckles , RNA, Long Noncoding , Humans , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Macrophages/metabolism
2.
Trends Cell Biol ; 33(9): 773-787, 2023 09.
Article in English | MEDLINE | ID: mdl-37062616

ABSTRACT

Since their discovery, members of the gasdermin (GSDM) family of proteins have been firmly established as executors of pyroptosis, with the N-terminal fragment of most GSDMs capable of forming pores in the plasma membrane. More recent findings suggest that some GSDMs can drive additional cell death pathways, such as apoptosis and necroptosis, through mechanisms independent of plasma membrane perforation. There is also emerging evidence that by associating with cellular compartments such as mitochondria, peroxisomes, endosomes, and the nucleus, GSDMs regulate cell death-independent aspects of cellular homeostasis. Here, we review the diversity of GSDM function across several cell types and explore how various cellular stresses can promote relocalization - and thus refunctionalization - of GSDMs.


Subject(s)
Gasdermins , Neoplasm Proteins , Humans , Neoplasm Proteins/metabolism , Apoptosis , Pyroptosis/physiology , Homeostasis , Inflammasomes/metabolism
3.
Elife ; 112022 11 21.
Article in English | MEDLINE | ID: mdl-36409059

ABSTRACT

To mount a protective response to infection while preventing hyperinflammation, gene expression in innate immune cells must be tightly regulated. Despite the importance of pre-mRNA splicing in shaping the proteome, its role in balancing immune outcomes remains understudied. Transcriptomic analysis of murine macrophage cell lines identified Serine/Arginine Rich Splicing factor 6 (SRSF6) as a gatekeeper of mitochondrial homeostasis. SRSF6-dependent orchestration of mitochondrial health is directed in large part by alternative splicing of the pro-apoptosis pore-forming protein BAX. Loss of SRSF6 promotes accumulation of BAX-κ, a variant that sensitizes macrophages to undergo cell death and triggers upregulation of interferon stimulated genes through cGAS sensing of cytosolic mitochondrial DNA. Upon pathogen sensing, macrophages regulate SRSF6 expression to control the liberation of immunogenic mtDNA and adjust the threshold for entry into programmed cell death. This work defines BAX alternative splicing by SRSF6 as a critical node not only in mitochondrial homeostasis but also in the macrophage's response to pathogens.


Subject(s)
Alternative Splicing , Immunity, Innate , Mitochondria , bcl-2-Associated X Protein , Animals , Mice , bcl-2-Associated X Protein/genetics , DNA, Mitochondrial , Serine-Arginine Splicing Factors/metabolism
4.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35907404

ABSTRACT

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Subject(s)
Mitochondria , Necroptosis , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/metabolism , Animals , Humans , Inflammasomes , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Macrophages , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
5.
Elife ; 92020 02 14.
Article in English | MEDLINE | ID: mdl-32057291

ABSTRACT

The Parkinson's disease (PD)-associated gene leucine-rich repeat kinase 2 (LRRK2) has been studied extensively in the brain. However, several studies have established that mutations in LRRK2 confer susceptibility to mycobacterial infection, suggesting LRRK2 also controls immunity. We demonstrate that loss of LRRK2 in macrophages induces elevated basal levels of type I interferon (IFN) and interferon stimulated genes (ISGs) and causes blunted interferon responses to mycobacterial pathogens and cytosolic nucleic acid agonists. Altered innate immune gene expression in Lrrk2 knockout (KO) macrophages is driven by a combination of mitochondrial stresses, including oxidative stress from low levels of purine metabolites and DRP1-dependent mitochondrial fragmentation. Together, these defects promote mtDNA leakage into the cytosol and chronic cGAS engagement. While Lrrk2 KO mice can control Mycobacterium tuberculosis (Mtb) replication, they have exacerbated inflammation and lower ISG expression in the lungs. These results demonstrate previously unappreciated consequences of LRRK2-dependent mitochondrial defects in controlling innate immune outcomes.


Parkinson's disease is a progressive nervous system disorder that causes tremors, slow movements, and stiff and inflexible muscles. The symptoms are caused by the loss of cells known as neurons in a specific part of the brain that helps to regulate how the body moves. Researchers have identified mutations in several genes that are associated with an increased risk of developing Parkinson's. The most common of these mutations occur in a gene called LRRK2. This gene produces a protein that has been shown to be important for maintaining cellular compartments known as mitochondria, which play a crucial role in generating energy. It remains unclear how these mutations lead to the death of neurons. Mutations in LRRK2 have also been shown to make individuals more susceptible to bacterial infections, suggesting that the protein that LRRK2 codes for may help our immune system. Weindel, Bell et al. set out to understand how this protein works in immune cells called macrophages, which 'eat' invading bacteria and produce type I interferons, molecules that promote immune responses. Mouse cells were used to measure the ability of normal macrophages and macrophages that lack the mouse equivalent to LRRK2 (referred to as Lrrk2 knockout macrophages) to make type I interferons. The experiments showed that the Lrrk2 knockout macrophages made type I interferons even when they were not infected with bacteria, suggesting they are subject to stress that triggers immune responses. It was possible to correct the behavior of the Lrrk2 knockout macrophages by repairing their mitochondria. When mice missing the gene equivalent to LRRK2 were infected with the bacterium that causes tuberculosis, they experienced more severe disease. The protein encoded by the LRRK2 gene is considered a potential target for therapies to treat Parkinson's disease, and several drugs that inhibit this protein are being tested in clinical trials. The findings of Weindel, Bell et al. suggest that these drugs may have unintended negative effects on a patient's ability to fight infection. This work also indicates that LRRK2 mutations may disrupt immune responses in the brain, where macrophage-like cells called microglia play a crucial role in maintaining healthy neurons. Future studies that examine how mutations in LRRK2 affect microglia may help us understand how Parkinson's disease develops.


Subject(s)
Homeostasis , Immunity, Innate , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mitochondria/metabolism , Mycobacterium tuberculosis/metabolism , Animals , Humans , Interferon Type I/genetics , Interferon Type I/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Knockout , Mutation , Mycobacterium tuberculosis/immunology , Parkinson Disease/metabolism , Sequence Analysis, RNA
6.
Article in English | MEDLINE | ID: mdl-31192157

ABSTRACT

Despite major strides in personalized genomics, it remains poorly understood why neurodegenerative diseases occur in only a fraction of individuals with a genetic predisposition and conversely, why individuals with no genetic risk of a disorder develop one. Chronic diseases like Alzheimer's, Parkinson's, and Multiple sclerosis are speculated to result from a combination of genetic and environmental factors, a concept commonly referred to as the "multiple hit hypothesis." A number of bacterial infections have been linked to increased risk of neurodegeneration, and in some cases, clearance of bacterial pathogens has been correlated with amelioration of central nervous system (CNS) deficits. Additionally, mutations in several genes known to contribute to CNS disorders like Parkinson's Disease have repeatedly been implicated in susceptibility to intracellular bacterial infection. Recent data has begun to demonstrate roles for these genes (PARK2, PINK1, and LRRK2) in modulating innate immune outcomes, suggesting that immune dysregulation may play an even more important role in neurodegeneration than previously appreciated. This review will broadly explore the connections between bacterial infection, immune dysregulation, and CNS disorders. Understanding this interplay and how bacterial pathogenesis contributes to the "multiple-hit hypothesis" of neurodegeneration will be crucial to develop therapeutics to effectively treat both neurodegeneration and infection.


Subject(s)
Bacterial Infections/complications , Bacterial Infections/immunology , Immunity, Innate , Neurodegenerative Diseases/physiopathology , Multiple Sclerosis/physiopathology , Parkinson Disease/physiopathology
7.
Cell Death Differ ; 26(2): 332-347, 2019 01.
Article in English | MEDLINE | ID: mdl-29786074

ABSTRACT

Interferons (IFNs) are critical determinants in immune-competence and autoimmunity, and are endogenously regulated by a low-level constitutive feedback loop. However, little is known about the functions and origins of constitutive IFN. Recently, lipopolysaccharide (LPS)-induced IFN was implicated as a driver of necroptosis, a necrotic form of cell death downstream of receptor-interacting protein (RIP) kinase activation and executed by mixed lineage kinase like-domain (MLKL) protein. We found that the pre-established IFN status of the cell, instead of LPS-induced IFN, is critical for the early initiation of necroptosis in macrophages. This pre-established IFN signature stems from cytosolic DNA sensing via cGAS/STING, and maintains the expression of MLKL and one or more unknown effectors above a critical threshold to allow for MLKL oligomerization and cell death. Finally, we found that elevated IFN-signaling in systemic lupus erythematosus (SLE) augments necroptosis, providing a link between pathological IFN and tissue damage during autoimmunity.


Subject(s)
Interferon-beta/metabolism , Macrophages/metabolism , Necroptosis , Protein Kinases/metabolism , Animals , Cell Survival/drug effects , Cells, Cultured , Cytosol/metabolism , DNA/metabolism , Gene Knockout Techniques , Humans , Interferon-beta/genetics , Interferon-beta/pharmacology , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nucleotidyltransferases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
8.
J Immunol ; 198(3): 1081-1092, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28031336

ABSTRACT

Individuals suffering from autoimmune disorders possess a hyperactive cellular phenotype where tolerance to self-antigens is lost. Autophagy has been implicated in both the induction and prevention of autoimmunity, and modulators of this cellular recycling process hold high potential for the treatment of autoimmune diseases. In this study, we determine the effects of a loss of autophagy in dendritic cells (DCs), as well as both B cells and DCs, in a TLR7-mediated model of autoimmunity, similar to systemic lupus erythematosus, where both cell types are critical for disease. Although a loss of DC autophagy slowed disease, the combined loss of autophagy in both cell types resulted in a lethal sepsis-like environment, which included tissue inflammation and hyperproduction of inflammasome-associated cytokines. Ablation of B cell signaling reversed this phenotype, indicating that activation of these cells is an essential step in disease induction. Thus, autophagy plays a dichotomous role in this model of disease.


Subject(s)
Autoimmunity , Autophagy/physiology , B-Lymphocytes/physiology , Dendritic Cells/physiology , Inflammation/etiology , Membrane Glycoproteins/physiology , Toll-Like Receptor 7/physiology , Animals , Interleukin-18/biosynthesis , Lupus Erythematosus, Systemic/etiology , Lymphadenopathy/etiology , Mice , Mice, Inbred C57BL , Splenomegaly/etiology
9.
Autophagy ; 11(7): 1010-24, 2015.
Article in English | MEDLINE | ID: mdl-26120731

ABSTRACT

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.


Subject(s)
Autoimmunity/immunology , Autophagy/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Inflammation/immunology , Inflammation/pathology , Membrane Glycoproteins/metabolism , Toll-Like Receptor 7/metabolism , Animals , Autoantibodies/immunology , Autophagy-Related Protein 5 , Breeding , Cytokines/metabolism , Dendritic Cells/metabolism , Genotype , Hematopoiesis , Immunoglobulin M/metabolism , Liver/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Macrophages/metabolism , Membrane Glycoproteins/agonists , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Signal Transduction/immunology , Spleen/metabolism , Toll-Like Receptor 7/agonists
SELECTION OF CITATIONS
SEARCH DETAIL
...