Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 16(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543190

ABSTRACT

Microphysiological systems (MPSs) are promising in vitro technologies for physiologically relevant predictions of the human absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates. However, polydimethylsiloxane (PDMS), a common material used in MPSs, can both adsorb and absorb small molecules, thereby compromising experimental results. This study aimed to evaluate the feasibility of using the PDMS-based Emulate gut-on-chip to determine the first-pass intestinal drug clearance. In cell-free PDMS organ-chips, we assessed the loss of 17 drugs, among which testosterone was selected as a model compound for further study based on its substantial ad- and absorptions to organ chips and its extensive first-pass intestinal metabolism with well-characterized metabolites. A gut-on-chip model consisting of epithelial Caco-2 cells and primary human umbilical vein endothelial cells (HUVECs) was established. The barrier integrity of the model was tested with reference compounds and inhibition of drug efflux. Concentration-time profiles of testosterone were measured in cell-free organ chips and in gut-on-chip models. A method to deduce the metabolic clearance was provided. Our results demonstrate that metabolic clearance can be determined with PDMS-based MPSs despite substantial compound loss to the chip. Overall, this study offers a practical protocol to experimentally assess ADME properties in PDMS-based MPSs.

2.
Antibiotics (Basel) ; 11(6)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35740164

ABSTRACT

The drug concentrations targeted in meropenem and piperacillin/tazobactam therapy also depend on the susceptibility of the pathogen. Yet, the pathogen is often unknown, and antibiotic therapy is guided by empirical targets. To reliably achieve the targeted concentrations, dosing needs to be adjusted for renal function. We aimed to evaluate a meropenem and piperacillin/tazobactam monitoring program in intensive care unit (ICU) patients by assessing (i) the adequacy of locally selected empirical targets, (ii) if dosing is adequately adjusted for renal function and individual target, and (iii) if dosing is adjusted in target attainment (TA) failure. In a prospective, observational clinical trial of drug concentrations, relevant patient characteristics and microbiological data (pathogen, minimum inhibitory concentration (MIC)) for patients receiving meropenem or piperacillin/tazobactam treatment were collected. If the MIC value was available, a target range of 1-5 × MIC was selected for minimum drug concentrations of both drugs. If the MIC value was not available, 8-40 mg/L and 16-80 mg/L were selected as empirical target ranges for meropenem and piperacillin, respectively. A total of 356 meropenem and 216 piperacillin samples were collected from 108 and 96 ICU patients, respectively. The vast majority of observed MIC values was lower than the empirical target (meropenem: 90.0%, piperacillin: 93.9%), suggesting empirical target value reductions. TA was found to be low (meropenem: 35.7%, piperacillin 50.5%) with the lowest TA for severely impaired renal function (meropenem: 13.9%, piperacillin: 29.2%), and observed drug concentrations did not significantly differ between patients with different targets, indicating dosing was not adequately adjusted for renal function or target. Dosing adjustments were rare for both drugs (meropenem: 6.13%, piperacillin: 4.78%) and for meropenem irrespective of TA, revealing that concentration monitoring alone was insufficient to guide dosing adjustment. Empirical targets should regularly be assessed and adjusted based on local susceptibility data. To improve TA, scientific knowledge should be translated into easy-to-use dosing strategies guiding antibiotic dosing.

3.
Pharmaceutics ; 13(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34959409

ABSTRACT

The prevalence and mortality rates of severe infections are high in intensive care units (ICUs). At the same time, the high pharmacokinetic variability observed in ICU patients increases the risk of inadequate antibiotic drug exposure. Therefore, dosing tailored to specific patient characteristics has a high potential to improve outcomes in this vulnerable patient population. This study aimed to develop a tabular dosing decision tool for initial therapy of meropenem integrating hospital-specific, thus far unexploited pathogen susceptibility information. An appropriate meropenem pharmacokinetic model was selected from the literature and evaluated using clinical data. Probability of target attainment (PTA) analysis was conducted for clinically interesting dosing regimens. To inform dosing prior to pathogen identification, the local pathogen-independent mean fraction of response (LPIFR) was calculated based on the observed minimum inhibitory concentrations distribution in the hospital. A simple, tabular, model-informed dosing decision tool was developed for initial meropenem therapy. Dosing recommendations achieving PTA > 90% or LPIFR > 90% for patients with different creatinine clearances were integrated. Based on the experiences during the development process, a generalised workflow for the development of tabular dosing decision tools was derived. The proposed workflow can support the development of model-informed dosing tools for initial therapy of various drugs and hospital-specific conditions.

SELECTION OF CITATIONS
SEARCH DETAIL