Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 903-917, 2024 May.
Article in English | MEDLINE | ID: mdl-38472151

ABSTRACT

BACKGROUND: Ethanol self-administration is governed by appetitive and consummatory behaviors. The sipper model procedurally separates these behaviors by training rats to meet a response requirement within 20 min to obtain continuous access to a sipper tube for an additional 20 min. Variations of this paradigm have been developed to quantify appetitive strength by evaluating lever presses during an extinction probe trial (EPT) or by deriving a break point (BP) from a progressive ratio (PR) schedule of reinforcement. However, no study has assessed the relationship between these tasks, within subjects, in both sexes. METHODS: Male and female rats (n = 16) were trained to meet a response requirement of 20 to access a slightly sweetened ethanol solution (10% ethanol + 1% sucrose). Two EPTs, during which no operant behavior was reinforced, were interleaved between 18 reinforced sessions. Next, rats completed an across-session PR schedule, where the response requirement increased each session. BP was defined as the highest completed response requirement. We then replicated the methodology in the same subjects responding for a 3% sucrose solution. Finally, the experiment was replicated in a separate cohort of rats (n = 24) trained to a response requirement of 4 to earn access to the ethanol solution and paradigm order (EPT vs. PR) was counterbalanced. RESULTS: We report strong, positive correlations between average EPT lever presses and BP across all experiments. No sex differences were observed in appetitive behaviors. However, the two cohorts revealed mixed results when assessing sex differences in consummatory measures. CONCLUSIONS: This study further validates the EPT as a measure of motivation and suggests that similar levels of motivation exist to procure alcohol in males and females. The findings complement the literature showing that appetitive and consummatory processes are distinct and thus should be independently assessed in self-administration paradigms.

2.
Eur J Neurosci ; 57(8): 1241-1259, 2023 04.
Article in English | MEDLINE | ID: mdl-36840503

ABSTRACT

Alcohol use disorder (AUD) and anxiety/stressor disorders frequently co-occur and this dual diagnosis represents a major health and economic problem worldwide. The basolateral amygdala (BLA) is a key brain region that is known to contribute to the aetiology of both disorders. Although many studies have implicated BLA hyperexcitability in the pathogenesis of AUD and comorbid conditions, relatively little is known about the specific efferent projections from this brain region that contribute to these disorders. Recent optogenetic studies have shown that the BLA sends a strong monosynaptic excitatory projection to the ventral hippocampus (vHC) and that this circuit modulates anxiety- and fear-related behaviours. However, it is not known if this pathway influences alcohol drinking-related behaviours. Here, we employed a rodent operant self-administration regimen that procedurally separates appetitive (e.g. seeking) and consummatory (e.g., drinking) behaviours, chemogenetics and brain region-specific microinjections, to determine if BLA-vHC circuitry influences alcohol and sucrose drinking-related measures. We first confirmed prior optogenetic findings that silencing this circuit reduced anxiety-like behaviours on the elevated plus maze. We then demonstrated that inhibiting the BLA-vHC pathway significantly reduced appetitive drinking-related behaviours for both alcohol and sucrose while having no effect on consummatory measures. Taken together, these findings provide the first indication that the BLA-vHC circuit may regulate appetitive reward seeking directed at alcohol and natural rewards and add to a growing body of evidence suggesting that dysregulation of this pathway may contribute to the pathophysiology of AUD and anxiety/stressor-related disorders.


Subject(s)
Alcoholism , Basolateral Nuclear Complex , Humans , Hippocampus , Ethanol/pharmacology , Alcohol Drinking , Sucrose/pharmacology
3.
J Exp Anal Behav ; 119(3): 488-500, 2023 05.
Article in English | MEDLINE | ID: mdl-36788660

ABSTRACT

The progression of recreational drinking to alcohol use disorder is characterized by loss of control over seeking, which involves continued use of alcohol despite negative consequences. The present study proposes a novel maladaptive alcohol self-administration task in which animals are trained to withhold alcohol drinking in the presence of an auditory cue signaling consequence (conflict phase) but to drink freely when there is no consequence (neutral phase). These phases are performed within trial; successful performance involves waiting for the conflict phase to end and drinking during the neutral phase. We discuss the background and implementation of the task, its relation to existing models, and its relevance to the field of translational alcohol research. Importantly, we also present evidence of its efficacy. Both male and female Long-Evans rats are capable of performing the maladaptive alcohol self-administration task for both sweetened and unsweetened alcohol solutions. Finally, we show that acute injection of a pharmacological stressor (yohimbine) significantly disrupted performance of the task in both sexes and reinforcers. We suggest the maladaptive alcohol self-administration task may prove particularly useful in models of alcohol use disorder or vulnerability to this disorder where its application may reveal maladaptive neural circuit adaptations responsible for motivational perturbations associated with loss of control over alcohol seeking.


Subject(s)
Alcoholism , Female , Male , Rats , Animals , Rats, Long-Evans , Ethanol/pharmacology , Alcohol Drinking , Self Administration , Conditioning, Operant
4.
Neurobiol Dis ; 177: 105967, 2023 02.
Article in English | MEDLINE | ID: mdl-36535550

ABSTRACT

Epidemiological studies identified alcohol use disorder (AUD) as a risk factor for Alzheimer's disease (AD), yet there is conflicting evidence on how alcohol use promotes AD pathology. In this study, a 10-week moderate two-bottle choice drinking paradigm was used to identify how chronic ethanol exposure alters amyloid-ß (Aß)-related pathology, metabolism, and behavior. Ethanol-exposed APPswe/PSEN1dE9 (APP/PS1) mice showed increased brain atrophy and an increased number of amyloid plaques. Further analysis revealed that ethanol exposure led to a shift in the distribution of plaque size in the cortex and hippocampus. Ethanol-exposed mice developed a greater number of smaller plaques, potentially setting the stage for increased plaque proliferation in later life. Ethanol drinking APP/PS1 mice also exhibited deficits in nest building, a metric of self-care, as well as increased locomotor activity and central zone exploration in an open field test. Ethanol exposure also led to a diurnal shift in feeding behavior which was associated with changes in glucose homeostasis and glucose intolerance. Complementary in vivo microdialysis experiments were used to measure how acute ethanol directly modulates Aß in the hippocampal interstitial fluid (ISF). Acute ethanol transiently increased hippocampal ISF glucose levels, suggesting that ethanol directly affects cerebral metabolism. Acute ethanol also selectively increased ISF Aß40, but not ISF Aß42, levels during withdrawal. Lastly, chronic ethanol drinking increased N-methyl-d-aspartate receptor (NMDAR) and decreased γ-aminobutyric acid type-A receptor (GABAAR) mRNA levels, indicating a potential hyperexcitable shift in the brain's excitatory/inhibitory (E/I) balance. Collectively, these experiments suggest that ethanol may increase Aß deposition by disrupting metabolism and the brain's E/I balance. Furthermore, this study provides evidence that a moderate drinking paradigm culminates in an interaction between alcohol use and AD-related phenotypes with a potentiation of AD-related pathology, behavioral dysfunction, and metabolic impairment.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Disease Models, Animal , Ethanol/toxicity , Glucose/metabolism , Hippocampus/metabolism , Mice, Transgenic , Plaque, Amyloid/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
5.
Addict Neurosci ; 92023 Dec 15.
Article in English | MEDLINE | ID: mdl-38188062

ABSTRACT

Early life stress (ELS) is a major risk factor for alcohol use disorder (AUD) and comorbid neuropsychiatric conditions. We previously demonstrated that an adolescent social isolation (aSI) model of ELS significantly increased behavioral risk factors for these disorders (e.g. anxiety-like behaviors, alcohol drinking) in male, but not female rats. Since many neurodevelopmental milestones are accelerated in females, we investigated whether an earlier/shorter isolation window (PND 21-38) would yield comparable phenotypes in both sexes. In two experiments, Long Evans rats were socially isolated (SI) or group-housed (GH) on postnatal day (PND) 21 and locomotion was assessed in the open field test (OFT; PND 30). Experiment 1 also assessed behavior on the elevated plus-maze (EPM) (PND 32). In Experiment 2, all rats were single housed on PND 38 to assess home cage alcohol drinking. Experiment 1 revealed that SI females had increased locomotor activity in the OFT but did not differ from GH subjects on the EPM. The OFT results were replicated in both sexes in Experiment 2 and both male and female SI rats had significantly greater ethanol consumption during an eight day continuous access paradigm. In contrast, during subsequent intermittent two-bottle choice drinking, only SI females displayed greater ethanol intake and preference and increased consumption of a quinine-adulterated alcohol solution. These findings demonstrate that early life social isolation can promote AUD vulnerability-related phenotypes in female rats but that there are profound sex differences in the vulnerability window to this early life stressor. Uncovering the neural mechanisms responsible for these sexually dimorphic differences in sensitivity to ELS may shed light on the biological substrates associated with vulnerability to AUD and comorbid disorders of negative emotion in men and women.

7.
Front Neurosci ; 15: 669075, 2021.
Article in English | MEDLINE | ID: mdl-33994940

ABSTRACT

Alcohol use disorder (AUD) differentially impacts men and women and a growing body of evidence points to sex-dependent adaptations in a number of brain regions. In a prior study, we explored the effect of a chronic intermittent ethanol exposure (CIE) model of AUD on neuronal and molecular adaptations in the dorsal and ventral domains of the hippocampus (dHC and vHC, respectively) in male rats. We found the vHC to be particularly sensitive to CIE, showing an increase in neuronal excitability and synaptic proteins associated with augmented excitation. These findings were accompanied by a CIE-dependent increase in anxiety-like behaviors. To explore sex-dependent adaptations in the hippocampus, we conducted a similar study in female rats. CIE-treated female rats showed a relatively modest increase in anxiety-like behaviors along with a robust increase in depressive-like measures. Despite both sexes showing clear evidence of a negative affective state following CIE, the vHC of females showed a decrease, rather than an increase, in neuronal excitability. In line with the reduced sensitivity to neural adaptations in the dHC of male rats, we were unable to identify any functional changes in the dHC of females. The functional changes of the vHC in female rats could not be explained by altered expression levels of a number of proteins typically associated with changes in neuronal excitability. Taken together, these findings point to sex as a major factor in CIE-dependent hippocampal adaptations that should be explored further to better understand possible gender differences in the etiology and treatment of AUD.

8.
Sci Rep ; 11(1): 8749, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888757

ABSTRACT

The hippocampus, particularly its ventral domain, can promote negative affective states (i.e. stress and anxiety) that play an integral role in the development and persistence of alcohol use disorder (AUD). The ventral hippocampus (vHC) receives strong excitatory input from the basolateral amygdala (BLA) and the BLA-vHC projection bidirectionally modulates anxiety-like behaviors. However, no studies have examined the effects of chronic alcohol on the BLA-vHC circuit. In the present study, we used ex vivo electrophysiology in conjunction with optogenetic approaches to examine the effects of chronic intermittent ethanol exposure (CIE), a well-established rodent model of AUD, on the BLA-vHC projection and putative intrinsic vHC synaptic plasticity. We discovered prominent BLA innervation in the subicular region of the vHC (vSub). CIE led to an overall increase in the excitatory/inhibitory balance, an increase in AMPA/NMDA ratios but no change in paired-pulse ratios, consistent with a postsynaptic increase in excitability in the BLA-vSub circuit. CIE treatment also led to an increase in intrinsic network excitability in the vSub. Overall, our findings suggest a hyperexcitable state in BLA-vSub specific inputs as well as intrinsic inputs to vSub pyramidal neurons which may contribute to the negative affective behaviors associated with CIE.


Subject(s)
Basolateral Nuclear Complex/drug effects , Ethanol/pharmacology , Hippocampus/drug effects , Alcoholism/physiopathology , Animals , Basolateral Nuclear Complex/physiology , Ethanol/administration & dosage , Hippocampus/physiology , Male , Neuronal Plasticity/drug effects , Optogenetics , Rats , Rats, Long-Evans , Synaptic Transmission/drug effects
9.
Mol Biol Rep ; 48(4): 3871-3876, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33880672

ABSTRACT

Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Subject(s)
Cocaine/pharmacology , Ethanol/pharmacology , Quinazolines/pharmacology , Radiopharmaceuticals/pharmacology , Carbon Radioisotopes , Cell Line, Tumor , Central Nervous System Agents/pharmacology , Humans , Microtubules/drug effects , Microtubules/metabolism , Neurons/drug effects , Neurons/metabolism , Protein Binding , Tubulin/metabolism , Tubulin Modulators/pharmacology
10.
Mol Psychiatry ; 26(6): 2350-2362, 2021 06.
Article in English | MEDLINE | ID: mdl-33432187

ABSTRACT

Rapid antidepressants are novel treatments for major depressive disorder (MDD) and work by blocking N-methyl-D-aspartate receptors (NMDARs), which, in turn, activate the protein synthesis pathway regulated by mechanistic/mammalian target of rapamycin complex 1 (mTORC1). Our recent work demonstrates that the RNA-binding protein Fragile X Mental Retardation Protein (FMRP) is downregulated in dendrites upon treatment with a rapid antidepressant. Here, we show that the behavioral effects of the rapid antidepressant Ro-25-6981 require FMRP expression, and treatment promotes differential mRNA binding to FMRP in an mTORC1-dependent manner. Further, these mRNAs are identified to regulate transsynaptic signaling. Using a novel technique, we show that synapse formation underlying the behavioral effects of Ro-25-6981 requires GABABR-mediated mTORC1 activity in WT animals. Finally, we demonstrate that in an animal model that lacks FMRP expression and has clinical relevance for Fragile X Syndrome (FXS), GABABR activity is detrimental to the effects of Ro-25-6981. These effects are rescued with the combined therapy of blocking GABABRs and NMDARs, indicating that rapid antidepressants alone may not be an effective treatment for people with comorbid FXS and MDD.


Subject(s)
Depressive Disorder, Major , Fragile X Syndrome , Animals , Antidepressive Agents/pharmacology , Depressive Disorder, Major/drug therapy , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/drug therapy , Fragile X Syndrome/genetics , Humans , Synapses
11.
Alcohol ; 91: 41-51, 2021 03.
Article in English | MEDLINE | ID: mdl-33321179

ABSTRACT

Early life stress is known to impact vulnerability to psychopathological disorders in adulthood, including anxiety and alcohol use disorder (AUD), but the mechanisms underlying susceptibility to these outcomes are not fully understood. In the current study, we used adolescent social isolation (ASI) to determine whether Heterogeneous Stock (HS) rats, an outbred model used for genetic fine-mapping, could be used to study the genetics contributing to ASI-induced anxiety- and AUD-like behavior. We isolated (ASI) or group-housed (adolescent group-housed; AGH) 64 male HS rats at 4 weeks of age. After 5 weeks in these housing conditions, multiple anxiety and coping/despair-like behaviors were measured. All rats were then individually housed and assessed for voluntary ethanol self-administration. At euthanasia, synaptoneurosomes were isolated from a subset of brains to examine the expression of two proteins associated with alcohol drinking-related behaviors, GluA1 and SK2, in the dorsal (dHC) and ventral hippocampus (vHC). We found that ASI increased hyperactivity in the open field test relative to AGH, with no changes in other anxiety-like behaviors. Surprisingly, ASI rats demonstrated decreased immobility and increased climbing in the forced swim test relative to AGH. In contrast to prior studies by us and others, we found no difference in self-administration of 20% ethanol, with decreased ethanol self-administration in ASI relative to AGH rats at higher ethanol concentrations. Furthermore, while ASI in Long-Evans rats resulted in decreased SK2 expression in vHC synaptosomes, no differences were seen in vHC synaptosomes for SK2 or GluA1 in HS rats. These results demonstrate that HS rats are protected against many of the negative effects previously seen in response to ASI, namely anxiety-like behavior and increased ethanol self-administration. The current work suggests that a lack of change in SK2 and GluA1 expression levels in the vHC may play a role in conferring this protection.


Subject(s)
Alcohol Drinking , Anxiety , Hyperkinesis/psychology , Stress, Psychological/complications , Animals , Ethanol , Male , Rats , Rats, Long-Evans
12.
Acta Neuropathol Commun ; 7(1): 173, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31703603

ABSTRACT

Adolescent binge drinking represents a major public health challenge and can lead to persistent neurological and mental conditions, but the underlying pathogenic mechanisms remain poorly understood. Using a mouse model of adolescent binge ethanol treatment (ABET), we found that this treatment induced behavioral changes associated with demyelination in different brain regions. After ABET, adolescent mice exhibited anxiogenic behaviors with no change in locomotion on the elevated plus maze, and impaired spatial memory indicated by a significant reduction in spontaneous alternation in the Y maze test. Both effects persisted into adulthood. Anatomical studies further showed that ABET induced a significant reduction of parvalbumin-positive (PV+) GABAergic interneurons and myelin density in the hippocampus and medial prefrontal cortex (mPFC). While these deficits in PV+ interneurons and myelin persisted into early adulthood in the hippocampus, the myelin density recovered in the mPFC. Moreover, whereas ABET mainly damaged myelin of PV+ axons in the hippocampus, it primarily damaged myelin of PV-negative axons in the mPFC. Thus, our findings reveal that an adolescent binge alcohol treatment regimen disrupts spatial working memory, increases anxiety-like behaviors, and exerts unique temporal and spatial patterns of gray matter demyelination in the hippocampus and mPFC.


Subject(s)
Anxiety/pathology , Binge Drinking/pathology , Demyelinating Diseases/pathology , Ethanol/toxicity , Interneurons/pathology , Age Factors , Animals , Anxiety/chemically induced , Anxiety/psychology , Binge Drinking/psychology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/psychology , Ethanol/administration & dosage , Hippocampus/drug effects , Hippocampus/pathology , Interneurons/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/pathology
13.
ACS Chem Neurosci ; 10(4): 2033-2044, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30284806

ABSTRACT

Chronic peri-adolescent stress in humans increases risk to develop a substance use disorder during adulthood. Rats reared in social isolation during peri-adolescence (aSI; 1 rat/cage) period show greater ethanol and cocaine intake compared to group housed (aGH; 4 rats/cage) rats. In addition, aSI rats have a heightened dopamine response in the nucleus accumbens (NAc) to rewarding and aversive stimuli. Furthermore, single pulse electrical stimulation in slices containing NAc core elicits greater dopamine release in aSI rats. Here, we further investigated dopamine release kinetics and machinery following aSI. Dopamine release, across a wide range of stimulation intensities and frequencies, was significantly greater in aSI rats. Interestingly, subthreshold intensity stimulations also resulted in measurable dopamine release in accumbal slices from aSI but not aGH rats. Extracellular [Ca2+] manipulations revealed augmented calcium sensitivity of dopamine release in aSI rats. The readily releasable pools of dopamine, examined by bath application of Ro-04-1284/000, a vesicular monoamine transporter 2 (VMAT2) inhibitor, were depleted faster in aGH rats. Western blot analysis of release machinery proteins (VMAT2, Synaptogyrin-3, Syntaxin-1, and Munc13-3) showed no difference between the two groups. Tyrosine hydroxylase (TH) protein expression levels, however, were elevated in aSI rats. The greater dopamine release could potentially be explained by higher levels of TH, the rate-limiting step for dopamine synthesis. This augmented responsivity of the dopamine system and heightened dopamine availability post-aSI may lead to an increased risk of addiction vulnerability.


Subject(s)
Dopamine/metabolism , Nucleus Accumbens/metabolism , Presynaptic Terminals/metabolism , Social Isolation , Stress, Psychological/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Age Factors , Animals , Chronic Disease , Dopamine Uptake Inhibitors/pharmacology , Male , Nucleus Accumbens/drug effects , Presynaptic Terminals/drug effects , Rats , Rats, Long-Evans , Social Isolation/psychology , Stress, Psychological/psychology , Vesicular Monoamine Transport Proteins/antagonists & inhibitors
14.
Neuroscience ; 398: 144-157, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30481568

ABSTRACT

Many studies have implicated hippocampal dysregulation in the pathophysiology of alcohol use disorder (AUD). However, over the past twenty years, a growing body of evidence has revealed distinct functional roles of the dorsal (dHC) and ventral (vHC) hippocampal subregions, with the dHC being primarily involved in spatial learning and memory and the vHC regulating anxiety- and depressive-like behaviors. Notably, to our knowledge, no rodent studies have examined the effects of chronic ethanol exposure on synaptic transmission along the dorsal/ventral axis. To that end, we examined the effects of the chronic intermittent ethanol vapor exposure (CIE) model of AUD on dHC and vHC synaptic excitability. Adult male Long-Evans rats were exposed to CIE or AIR for 10 days (12 h/day; targeting blood ethanol levels of 175-225 mg%) and recordings were made 24 h into withdrawal. As expected, this protocol increased anxiety-like behaviors on the elevated plus-maze and successive alleys test. Extracellular recordings revealed marked CIE-associated increases in synaptic excitation in the CA1 region that were exclusively restricted to the ventral domain of the hippocampus. Western blot analysis of synaptoneurosomal fractions revealed that the expression of two proteins that regulate synaptic strength, GluA2 and SK2, were dysregulated in the vHC, but not the dHC, following CIE. Together, these findings suggest that the ventral CA1 region may be particularly sensitive to the maladaptive effects of chronic ethanol exposure and provide new insight into some of the neural substrates that may contribute to the negative affective state that develops during withdrawal.


Subject(s)
Alcohol-Related Disorders/physiopathology , Central Nervous System Depressants/adverse effects , Ethanol/adverse effects , Hippocampus/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Animals , Disease Models, Animal , Gene Expression/drug effects , Germinal Center Kinases , Hippocampus/physiopathology , Male , Protein Serine-Threonine Kinases/metabolism , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission/physiology
15.
Sci Rep ; 7(1): 12300, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951619

ABSTRACT

It has long been appreciated that adolescence represents a uniquely vulnerable period when chronic exposure to stressors can precipitate the onset of a broad spectrum of psychiatric disorders and addiction in adulthood. However, the neurobiological substrates and the full repertoire of adaptations within these substrates making adolescence a particularly susceptible developmental stage are not well understood. Prior work has demonstrated that a rodent model of adolescent social isolation (aSI) produces robust and persistent increases in phenotypes relevant to anxiety/stressor disorders and alcohol addiction, including anxiogenesis, deficits in fear extinction, and increased ethanol consumption. Here, we used extracellular field recordings in hippocampal slices to investigate adaptations in synaptic function and synaptic plasticity arising from aSI. We demonstrate that this early life stressor leads to enhanced excitatory synaptic transmission and decreased levels of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Further, these changes were largely confined to the ventral hippocampus. As the ventral hippocampus is integral to neurocircuitry that mediates emotional behaviors, our results add to mounting evidence that aSI has profound effects on brain areas that regulate affective states. These studies also lend additional support to our recent proposal of the aSI model as a valid model of alcohol addiction vulnerability.


Subject(s)
Alcoholism/psychology , CA1 Region, Hippocampal/physiology , Disease Susceptibility/psychology , Social Isolation/psychology , Underage Drinking/psychology , Age Factors , Animals , CA1 Region, Hippocampal/diagnostic imaging , Disease Models, Animal , Female , Humans , Long-Term Potentiation/physiology , Male , Neuronal Plasticity/physiology , Rats , Rats, Long-Evans , Synaptic Transmission/physiology , Vulnerable Populations/psychology
16.
Alcohol Clin Exp Res ; 40(6): 1202-14, 2016 06.
Article in English | MEDLINE | ID: mdl-27154240

ABSTRACT

Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in identifying neurobiological adaptations associated with increased risk of developing these disorders.


Subject(s)
Alcoholism/epidemiology , Alcoholism/physiopathology , Anxiety Disorders/epidemiology , Brain/physiology , Social Isolation/psychology , Alcoholism/psychology , Animals , Anxiety Disorders/psychology , Comorbidity , Disease Models, Animal , Humans
17.
Neuropsychopharmacology ; 41(9): 2263-74, 2016 08.
Article in English | MEDLINE | ID: mdl-26860203

ABSTRACT

Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.


Subject(s)
Dopamine/metabolism , Ethanol/administration & dosage , Nucleus Accumbens/metabolism , Receptors, Opioid, kappa/metabolism , Social Isolation , Stress, Psychological , Animals , Male , Naltrexone/analogs & derivatives , Nucleus Accumbens/drug effects , Rats, Long-Evans , Receptors, Opioid, kappa/antagonists & inhibitors
18.
Neuropharmacology ; 101: 471-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26525189

ABSTRACT

Social isolation rearing (SI) is a model of early life stress that results in neurobiological alterations leading to increased anxiety-like behaviors. These animals also exhibit an increased propensity to administer psychostimulants, such as cocaine; however, the mechanisms governing this increased addiction vulnerability remain to be elucidated. Long-term stressors have been shown to produce important alterations in nucleus accumbens core (NAc) function. The NAc regulates motivated and goal-directed behaviors, and individual differences in NAc function have been shown to be predictive of addiction vulnerability. Rats were reared in group (GH; 4/cage) or SI (1/cage) conditions from weaning (PD 28) into early adulthood (PD 77) and dopamine release was assessed using voltammetry in brain slices containing the NAc and dorsomedial striatum. SI rats exhibited enhanced dopamine release and uptake in both regions compared to GH rats. In regard to psychostimulant effects directly at the dopamine transporter (DAT), methylphenidate and amphetamine, but not cocaine, inhibited uptake more in SI than GH rats. The increased potencies were positively correlated with uptake rates, suggesting that increased potencies of amphetamine-like compounds are due to changes in DAT function. Cocaine's effects on uptake were similar between rearing conditions, however, cocaine enhanced evoked dopamine release greater in SI than GH rats, suggesting that the enhanced cocaine reinforcement in SI animals involves a DAT independent mechanism. Together, the results provide the first evidence that greater psychostimulant effects in SI compared to GH rats are due to effects on dopamine terminals related to uptake dependent and independent mechanisms.


Subject(s)
Central Nervous System Stimulants/pharmacology , Corpus Striatum/drug effects , Dopamine/metabolism , Social Isolation , Age Factors , Amphetamine/pharmacology , Analysis of Variance , Animals , Animals, Newborn , Cocaine/pharmacology , Dopamine Agents/pharmacology , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Methylphenidate/pharmacology , Rats , Rats, Long-Evans
19.
Synapse ; 69(8): 385-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25963724

ABSTRACT

Adolescent social isolation (SI) results in numerous behavioral alterations associated with increased risk of alcoholism. Notably, many of these changes involve the basolateral amygdala (BLA), including increased alcohol seeking. The BLA sends a strong glutamatergic projection to the nucleus accumbens and activation of this pathway potentiates reward-seeking behavior. Dopamine (DA) and norepinephrine (NE) exert powerful excitatory and inhibitory effects on BLA activity and chronic stress can disrupt the excitation-inhibition balance maintained by these catecholamines. Notably, the impact of SI on BLA DA and NE neurotransmission is unknown. Thus the aim of this study was to characterize SI-mediated catecholamine alterations in the BLA. Male Long Evans rats were housed in groups of four (GH) or in SI for 6 weeks during adolescence. DA and NE transporter levels were then measured using Western blot hybridization and baseline and ethanol-stimulated DA and NE levels were quantified using microdialysis. DA transporter levels were increased and baseline DA levels were decreased in SI compared to GH rats. SI also increased DA responses to an acute ethanol (2 g kg(-1)) challenge. While no group differences were noted in NE transporter or baseline NE levels, acute ethanol (2 g kg(-1)) only significantly increased NE levels in SI animals. Collectively, these SI-dependent changes in BLA catecholamine signaling may lead to an increase in BLA excitability and a strengthening of the glutamatergic projection between the BLA and NAc. Such changes may promote the elevated ethanol drinking behavior observed in rats subjected to chronic adolescent stress.


Subject(s)
Basolateral Nuclear Complex/drug effects , Central Nervous System Depressants/pharmacology , Dopamine/metabolism , Ethanol/pharmacology , Norepinephrine/metabolism , Social Isolation , Animals , Basolateral Nuclear Complex/growth & development , Basolateral Nuclear Complex/metabolism , Blotting, Western , Chromatography, High Pressure Liquid , Chronic Disease , Disease Models, Animal , Dopamine Plasma Membrane Transport Proteins/metabolism , Extracellular Space/drug effects , Extracellular Space/metabolism , Male , Microdialysis , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Random Allocation , Rats, Long-Evans
20.
Alcohol Clin Exp Res ; 38(11): 2770-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25421514

ABSTRACT

BACKGROUND: Early-life stress is associated with increased vulnerability to alcohol addiction. However, the neural substrates linking chronic childhood/adolescent stress and increased risk of alcohol addiction are not well understood. In the nucleus accumbens (NAc), dopamine (DA) and norepinephrine (NE) signaling can be profoundly influenced by stress, anxiety, and drugs of abuse, including ethanol (EtOH). Here, we employed a rodent model of early-life stress that results in enduring increases in behavioral risk factors of alcoholism to gain a better understanding of how chronic adolescent stress may impact the EtOH sensitivity of DA and NE release in the NAc. METHODS: Male Long-Evans rats were either group housed (GH; 4 rats/cage) or socially isolated (SI; 1 rat/cage) for 6 weeks beginning on postnatal day 28. SI and GH rats were tested in adulthood for anxiety-like behaviors (elevated plus maze), and the effects of EtOH (1 and 2 g/kg; intraperitoneally.) on NAc DA and NE were assessed by microdialysis. RESULTS: SI animals showed increased anxiety-like behavior compared to GH animals. Although SI had no effect on baseline levels of DA or NE, baseline DA levels were positively correlated with anxiety measures. In addition, while no significant differences were observed with 1 g/kg EtOH, the 2 g/kg dose induced significantly greater DA release in SI animals. Moreover, EtOH (2 g/kg) only elevated NAc NE levels in SI rats. CONCLUSIONS: These results suggest that chronic early-life stress sensitizes accumbal DA and NE release in response to an acute EtOH challenge. A greater EtOH sensitivity of DA and NE release dynamics in the NAc may contribute to increases in behavioral risk factors of alcoholism, like greater EtOH self-administration, that are observed in SI rats.


Subject(s)
Alcohol Drinking/metabolism , Dopamine/metabolism , Ethanol/administration & dosage , Norepinephrine/metabolism , Nucleus Accumbens/metabolism , Social Isolation , Alcohol Drinking/psychology , Animals , Male , Nucleus Accumbens/drug effects , Random Allocation , Rats , Rats, Long-Evans , Self Administration , Social Isolation/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...