Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Alcohol ; 118: 9-16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582261

ABSTRACT

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.

2.
Hepatology ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687563

ABSTRACT

BACKGROUND AIMS: Liver macrophages are heterogeneous and play an important role in alcohol-associated liver disease (ALD) but there is limited understanding of the functions of specific macrophage subsets in the disease. We used a Western Diet Alcohol (WDA) mouse model of ALD to examine the hepatic myeloid cell compartment by scRNA seq and targeted Kupffer cell (KC) ablation to understand the diversity and function of liver macrophages in ALD. APPROACH AND RESULTS: In the WDA liver, KCs and infiltrating monocytes/macrophages (IMs) each represented about 50% of the myeloid pool. Five major KC clusters all expressed genes associated with receptor mediated endocytosis and lipid metabolism, but most were predicted to be non-inflammatory and antifibrotic with one minor KC cluster having a pro-inflammatory and extracellular matrix degradation gene signature. IM clusters, in contrast, were predicted to be pro-inflammatory and pro-fibrotic. In vivo diphtheria toxin based selective KC ablation during alcohol exposure resulted in a liver failure phenotype with increases in PT/INR and bilirubin, loss of differentiated hepatocyte gene expression, and an increase in expression of hepatocyte progenitor markers such as EpCAM, CK-7 and Igf2bp3. Gene set enrichment analysis of whole liver RNAseq from the KC ablated WDA mice showed a similar pattern as seen in human alcoholic hepatitis. CONCLUSIONS: In this ALD model, KCs are anti-inflammatory and are critical for maintenance of hepatocyte differentiation. IMs are largely pro-inflammatory and contribute more to liver fibrosis. Future targeting of specific macrophage subsets may provide new approaches to treatment of liver failure and fibrosis in ALD.

3.
JHEP Rep ; 6(4): 101019, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38455470

ABSTRACT

Background & Aims: Recent studies have implicated platelets, particularly α-granules, in the development of non-alcoholic steatohepatitis (NASH). However, the specific mechanisms involved have yet to be determined. Notably, thrombospondin 1 (TSP1) is a major component of the platelet α-granules released during platelet activation. Hence, we aimed to determine the role of platelet-derived TSP1 in NASH. Methods: Platelet-specific Tsp1 knockout mice (TSP1Δpf4) and their wild-type littermates (TSP1F/F) were used. NASH was induced by feeding the mice with a diet enriched in fat, sucrose, fructose, and cholesterol (AMLN diet). A human liver NASH organoid model was also employed. Results: Although TSP1 deletion in platelets did not affect diet-induced steatosis, TSP1Δpf4 mice exhibited attenuated NASH and liver fibrosis, accompanied by improvements in plasma glucose and lipid homeostasis. Furthermore, TSP1Δpf4 mice showed reduced intrahepatic platelet accumulation, activation, and chemokine production, correlating with decreased immune cell infiltration into the liver. Consequently, this diminished proinflammatory signaling in the liver, thereby mitigating the progression of NAFLD. Moreover, in vitro data revealed that co-culturing TSP1-deficient platelets in a human liver NASH organoid model attenuated hepatic stellate cell activation and NASH progression. Additionally, TSP1-deficient platelets play a role in regulating brown fat endocrine function, specifically affecting Nrg4 (neuregulin 4) production. Crosstalk between brown fat and the liver may also influence the progression of NAFLD. Conclusions: These data suggest that platelet α-granule-derived TSP1 is a significant contributor to diet-induced NASH and fibrosis, potentially serving as a new therapeutic target for this severe liver disease. Impact and implications: Recent studies have implicated platelets, specifically α-granules, in the development of non-alcoholic steatohepatitis, yet the precise mechanisms remain unknown. In this study, through the utilization of a tissue-specific knockout mouse model and human 3D liver organoid, we demonstrated that platelet α-granule-derived TSP1 significantly contributes to diet-induced non-alcoholic steatohepatitis and fibrosis. This contribution is, in part, attributed to the regulation of intrahepatic immune cell infiltration and potential crosstalk between fat and the liver. These findings suggest that platelet-derived TSP1 may represent a novel therapeutic target in non-alcoholic fatty liver disease.

4.
Hepatology ; 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943941

ABSTRACT

BACKGROUND AND AIMS: Alcohol-associated liver disease is a major cause of alcohol-associated mortality. Recently, we identified hepatic demethylases lysine demethylase (KDM)5B and KDM5C as important epigenetic regulators of alcohol response in the liver. In this study, we aimed to investigate the role of KDM5 demethylases in alcohol-associated liver disease resolution. APPROACH AND RESULTS: We showed that alcohol-induced liver steatosis rapidly resolved after alcohol cessation. In contrast, fibrosis persisted in the liver for up to 8 weeks after the end of alcohol exposure. Defects in fibrosis resolution were in part due to alcohol-induced KDM5B and KDM5C-dependent epigenetic changes in hepatocytes. Using cell-type-specific knockout mice, we found that adeno-associated virus-mediated knockout of KDM5B and KDM5C demethylases in hepatocytes at the time of alcohol withdrawal promoted fibrosis resolution. Single-cell ATAC sequencing analysis showed that during alcohol-associated liver disease resolution epigenetic cell states largely reverted to control conditions. In addition, we found unique epigenetic cell states distinct from both control and alcohol states and identified associated transcriptional regulators, including liver X receptor (LXR) alpha (α). In vitro and in vivo analysis confirmed that knockout of KDM5B and KDM5C demethylases promoted LXRα activity, likely through regulation of oxysterol biosynthesis, and this activity was critical for the fibrosis resolution process. Reduced LXR activity by small molecule inhibitors prevented fibrosis resolution in KDM5-deficient mice. CONCLUSIONS: In summary, KDM5B and KDM5C demethylases prevent liver fibrosis resolution after alcohol cessation in part through suppression of LXR activity.

5.
Clin Transl Sci ; 16(12): 2719-2728, 2023 12.
Article in English | MEDLINE | ID: mdl-37877453

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), newly renamed metabolic dysfunction-associated liver disease (MASLD), is a leading cause of liver disease in children and adults. There is a paucity of data surrounding potential biomarkers and therapeutic targets, especially in pediatric NAFLD. Leukocyte cell-derived chemotaxin 2 (LECT2) is a chemokine associated with both liver disease and skeletal muscle insulin resistance. Our aim was to determine associations between LECT2 and common clinical findings of NAFLD in pediatric patients. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum LECT2 concentrations in children (aged 2-17 years) with and without NAFLD. LECT2 concentrations were then correlated to clinical parameters in NAFLD. Mean LECT2 was significantly elevated in children with NAFLD versus healthy controls (n = 63 vs. 42, 5.83 ± 1.98 vs. 4.02 ± 2.02 ng/mL, p < 0.005). Additionally, LECT2 had strong correlations with body mass index (BMI) (Pearson r = 0.301, p = 0.002). A LECT2 concentration of 3.76 mg/mL predicts NAFLD with a sensitivity of 90.5% and specificity of 54.8%. Principal component analysis and logistic regression models further confirmed associations between LECT2 and NAFLD status. This study demonstrates increased serum LECT2 concentrations in pediatric NAFLD, which correlates with BMI and shows strong predictive value within these patients. Our data indicate that LECT2 is a potential diagnostic biomarker of disease and should be further investigated in pediatric as well as adult NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Child , Humans , Biomarkers , Chemotactic Factors/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/metabolism
6.
J Cell Sci ; 136(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-37051862

ABSTRACT

Macrophage-derived extracellular vesicles (EVs) play key roles in intercellular communication. Within the liver, they have been linked to several inflammatory diseases including nonalcoholic fatty liver disease (NAFLD). In this study, we found that inflammatory macrophages cause injury to hepatocytes, in part by a cell-cell crosstalk phenomenon involving the secretion of EVs containing pro-inflammatory cargo. Incorporation of these inflammatory signals into EV requires the cleavage of the trafficking adaptor protein RILP, which, as previously shown, results from inflammasome-mediated caspase-1 activation. RILP cleavage can be blocked by overexpressing a dominant negative, non-cleavable form of RILP (ncRILP). EV preparations from ncRILP-expressing cells are, by themselves, sufficient to suppress inflammatory effects in hepatocytes. These results suggest that both direct RILP manipulation and/or supplying ncRILP-modified EVs could be used as a novel therapy for the treatment of inflammatory liver diseases.


Subject(s)
Extracellular Vesicles , Non-alcoholic Fatty Liver Disease , Humans , Hepatocytes/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Macrophages/metabolism , Extracellular Vesicles/metabolism
7.
J Virol ; 97(3): e0195022, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36877036

ABSTRACT

This study aimed to better characterize the repertoire of serum hepatitis B virus (HBV) RNAs during chronic HBV infection in humans, which remains understudied. Using reverse transcription-PCR (RT-PCR), real-time quantitative PCR (RT-qPCR), RNA-sequencing, and immunoprecipitation, we found that (i) >50% of serum samples bore different amounts of HBV replication-derived RNAs (rd-RNAs); (ii) a few samples contained RNAs transcribed from integrated HBV DNA, including 5'-HBV-human-3' RNAs (integrant-derived RNAs [id-RNAs]) and 5'-human-HBV-3' transcripts, as a minority of serum HBV RNAs; (iii) spliced HBV RNAs were abundant in <50% of analyzed samples; (iv) most serum rd-RNAs were polyadenylated via conventional HBV polyadenylation signal; (v) pregenomic RNA (pgRNA) was the major component of the pool of serum RNAs; (vi) the area of HBV positions 1531 to 1739 had very high RNA read coverage and thus should be used as a target for detecting serum HBV RNAs; (vii) the vast majority of rd-RNAs and pgRNA were associated with HBV virions but not with unenveloped capsids, exosomes, classic microvesicles, or apoptotic vesicles and bodies; (viii) considerable rd-RNAs presence in the circulating immune complexes was found in a few samples; and (ix) serum relaxed circular DNA (rcDNA) and rd-RNAs should be quantified simultaneously to evaluate HBV replication status and efficacy of anti-HBV therapy with nucleos(t)ide analogs. In summary, sera contain various HBV RNA types of different origin, which are likely secreted via different mechanisms. In addition, since we previously showed that id-RNAs were abundant or predominant HBV RNAs in many of liver and hepatocellular carcinoma tissues as compared to rd-RNAs, there is likely a mechanism favoring the egress of replication-derived RNAs. IMPORTANCE The presence of integrant-derived RNAs (id-RNAs) and 5'-human-HBV-3' transcripts derived from integrated hepatitis B virus (HBV) DNA in sera was demonstrated for the first time. Thus, sera of individuals chronically infected with HBV contained both replication-derived and integrant-transcribed HBV RNAs. The majority of serum HBV RNAs were the transcripts produced by HBV genome replication, which were associated with HBV virions and not with other types of extracellular vesicles. These and other above-mentioned findings advanced our understanding of the HBV life cycle. In addition, the study suggested a promising target area on the HBV genome to increase sensitivity of the detection of serum HBV RNAs and supported the idea that simultaneous detection of replication-derived RNAs (rd-RNAs) and relaxed circular DNA (rcDNA) in serum provides more adequate evaluation of (i) the HBV genome replication status and (ii) the durability and efficiency of the therapy with anti-HBV nucleos(t)ide analogs, which could be useful for improvement of the diagnostics and treatment of HBV-infected individuals.


Subject(s)
Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus/genetics , RNA , DNA, Viral/genetics , Virus Replication/genetics , DNA, Circular/genetics , RNA, Viral/genetics
8.
Hepatology ; 78(3): 803-819, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36943063

ABSTRACT

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is an acute liver and multisystem failure in patients with previously stable cirrhosis. A common cause of ACLF is sepsis secondary to bacterial infection. Sepsis-associated ACLF involves a loss of differentiated liver function in the absence of direct liver injury, and its mechanism is unknown. We aimed to study the mechanism of sepsis-associated ACLF using a novel mouse model. APPROACH AND RESULTS: Sepsis-associated ACLF was induced by cecal ligation and puncture procedure (CLP) in mice treated with thioacetamide (TAA). The combination of TAA and CLP resulted in a significant decrease in liver synthetic function and high mortality. These changes were associated with reduced metabolic gene expression and increased CCAAT enhancer binding protein beta (C/EBPß) transcriptional activity. We found that C/EBPß binding to its target gene promoters was increased. In humans, C/EBPß chromatin binding was similarly increased in the ACLF group compared with control cirrhosis. Hepatocyte-specific Cebpb knockout mice had reduced mortality and increased gene expression of hepatocyte differentiation markers in TAA/CLP mice, suggesting that C/EBPß promotes liver failure in these mice. C/EBPß activation was associated with endothelial dysfunction, characterized by reduced Angiopoietin-1/Angiopoietin-2 ratio and increased endothelial production of HGF. Angiopoietin-1 supplementation or Hgf knockdown reduced hepatocyte C/EBPß accumulation, restored liver function, and reduced mortality, suggesting that endothelial dysfunction induced by sepsis drives ACLF through HGF-C/EBPß pathway. CONCLUSIONS: The transcription factor C/EBPß is activated in both mouse and human ACLF and is a potential therapeutic target to prevent liver failure in patients with sepsis and cirrhosis.


Subject(s)
Acute-On-Chronic Liver Failure , Sepsis , Humans , Mice , Animals , Angiopoietin-1 , Angiopoietin-2 , Sepsis/complications , Liver Cirrhosis/complications , Hepatocyte Growth Factor
9.
Biology (Basel) ; 12(2)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36829532

ABSTRACT

Now, much is known regarding the impact of chronic and heavy alcohol consumption on the disruption of physiological liver functions and the induction of structural distortions in the hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death, we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these HIV- and malondialdehyde-expressing apoptotic hepatocytes.

10.
Cell Mol Gastroenterol Hepatol ; 15(1): 39-59, 2023.
Article in English | MEDLINE | ID: mdl-36191854

ABSTRACT

BACKGROUND & AIMS: Alcohol-associated liver disease (ALD) comprises a spectrum of disorders including steatosis, steatohepatitis, fibrosis, and cirrhosis. We aimed to study the role of protein arginine methyltransferase 6 (PRMT6), a new regulator of liver function, in ALD progression. METHODS: Prmt6-deficient mice and wild-type littermates were fed Western diet with alcohol in the drinking water for 16 weeks. Mice fed standard chow diet or Western diet alone were used as a control. RESULTS: We found that PRMT6 expression in the liver is down-regulated in 2 models of ALD and negatively correlates with disease severity in mice and human liver specimens. Prmt6-deficient mice spontaneously developed liver fibrosis after 1 year and more advanced fibrosis after high-fat diet feeding or thioacetamide treatment. In the presence of alcohol Prmt6 deficiency resulted in a dramatic increase in fibrosis development but did not affect lipid accumulation or liver injury. In the liver PRMT6 is primarily expressed in macrophages and endothelial cells. Transient replacement of knockout macrophages with wild-type macrophages in Prmt6 knockout mice reduced profibrotic signaling and prevented fibrosis progression. We found that PRMT6 decreases profibrotic signaling in liver macrophages via methylation of integrin α-4 at R464 residue. Integrin α-4 is predominantly expressed in infiltrating monocyte derived macrophages. Blocking monocyte infiltration into the liver with CCR2 inhibitor reduced fibrosis development in knockout mice and abolished differences between genotypes. CONCLUSIONS: Taken together, our data suggest that alcohol-mediated loss of Prmt6 contributes to alcohol-associated fibrosis development through reduced integrin methylation and increased profibrotic signaling in macrophages.


Subject(s)
Fatty Liver , Integrins , Liver Diseases, Alcoholic , Protein-Arginine N-Methyltransferases , Animals , Humans , Mice , Arginine/metabolism , Endothelial Cells , Fatty Liver/metabolism , Integrins/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Liver Cirrhosis/complications , Liver Diseases, Alcoholic/prevention & control , Methylation , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
12.
Cancer Gene Ther ; 29(12): 1961-1974, 2022 12.
Article in English | MEDLINE | ID: mdl-35902730

ABSTRACT

Long-term alcohol use is a confirmed risk factor of liver cancer tumorigenesis and metastasis. Multiple mechanisms responsible for alcohol related tumorigenesis have been proposed, including toxic reactive metabolite production, oxidative stress and fat accumulation. However, mechanisms underlying alcohol-mediated liver cancer metastasis remain largely unknown. We have previously demonstrated that SIRT7 regulates chemosensitivity by altering a p53-dependent pathway in human HCC. In the current study, we further revealed that SIRT7 is a critical factor in promoting liver cancer metastasis. SIRT7 expression is associated with disease stage and high SIRT7 predicts worse overall and disease-free survival. Overexpression of SIRT7 promotes HCC cell migration and EMT while knockdown of SIRT7 showed opposite effects. Mechanistically, we found that SIRT7 suppresses E-Cadherin expression through FOXO3-dependent promoter binding and H3K18 deacetylation. Knockdown of FOXO3 abolished the suppressive effect of SIRT7 on E-cadherin transcription. More importantly, we identified that alcohol treatment upregulates SIRT7 and suppresses E-cadherin expression via a CYP2E/ROS axis in hepatocytes both in vitro and in vivo. Antioxidant treatment in primary hepatocyte or CYP2E1-/- mice fed with alcohol impaired those effects. Reducing SIRT7 activity completely abolished alcohol-mediated promotion of liver cancer metastasis in vivo. Taken together, our data reveal that SIRT7 is a pivotal regulator of alcohol-mediated HCC metastasis.


Subject(s)
Carcinoma, Hepatocellular , Cytochrome P-450 CYP2E1 , Liver Neoplasms , Neoplasm Metastasis , Sirtuins , Animals , Humans , Mice , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic , Cytochrome P-450 CYP2E1/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Sirtuins/genetics , Sirtuins/metabolism , Up-Regulation
13.
J Gastroenterol Hepatol ; 37(9): 1815-1821, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35613944

ABSTRACT

BACKGROUND AND AIM: The American Association for the Study of Liver Diseases recommends a high index of suspicion for nonalcoholic steatohepatitis and advanced fibrosis in patients with type 2 diabetes (T2D) and an elevated fibrosis-4 index (FIB-4). We investigated the referral pattern of patients with T2D and FIB4 > 3.25 to the hepatology clinic and evaluated the clinical benefits to the patient. METHODS: We included patients aged 18-80 years with T2D and a FIB4 score >3.25 who had visited the internal medicine, family medicine, endocrinology clinic from 01/01/2014-5/31/2019. The first time point of high-risk FIB-4 was identified as the baseline for time-to-event analysis. The patients were classified based on whether they had visited the hepatology clinic (referred vs not referred). RESULTS: Of the 2174 patients, 290 (13.3%) were referred to the hepatology clinic, and 1884 (86.7%) were not referred. In multivariate analyses, the referred patients had a lower overall mortality risk (Hazard Ratio: 0.57; 95% CI: 0.38-87). Notably, the referred patients had the same rate of biochemical decompensation, as measured by progression to MELD ≥ 14, but a substantially higher rate of diagnosis in cirrhosis (27, 19-38) and cirrhosis complications, including ascites (2.9, 2.0-4.1), hepatic encephalopathy (99, 13-742), and liver cancer (14, 5-38). CONCLUSIONS: We found that patients with T2D and high-risk FIB4 are associated with better overall survival after referral to a hepatology clinic. We speculate that the survival difference is due to the increased recognition of cirrhosis and cirrhosis complications in the referred populations.


Subject(s)
Diabetes Mellitus, Type 2 , Gastroenterology , Non-alcoholic Fatty Liver Disease , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Fibrosis , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Referral and Consultation
14.
Hepatol Commun ; 6(8): 2042-2057, 2022 08.
Article in English | MEDLINE | ID: mdl-35468265

ABSTRACT

Alcohol-associated liver disease is a major cause of alcohol-related mortality. However, the mechanisms underlying disease progression are not fully understood. Recently we found that liver molecular pathways are altered by alcohol consumption differently in males and females. We were able to associate these sex-specific pathways with two upstream regulators: H3K4-specific demethylase enzymes KDM5B and KDM5C. Mice were fed the Lieber-DeCarli alcohol liquid diet for 3 weeks or a combination of a high-fat diet with alcohol in water for 16 weeks (western diet alcohol model [WDA] model). To assess the role of histone demethylases, mice were treated with AAV-shControl, AAV-shKdm5b, and/or AAV-shKdm5c and/or AAV-shAhR vectors. Gene expression and epigenetic changes after Kdm5b/5c knockdown were assessed by RNA-sequencing and H3K4me3 chromatin immunoprecipitation analysis. We found that less than 5% of genes affected by Kdm5b/Kdm5c knockdown were common between males and females. In females, Kdm5b/Kdm5c knockdown prevented fibrosis development in mice fed the WDA alcohol diet for 16 weeks and decreased fibrosis-associated gene expression in mice fed the Lieber-DeCarli alcohol liquid diet. In contrast, fibrosis was not affected by Kdm5b/Kdm5c knockdown in males. We found that KDM5B and KDM5C promote fibrosis in females through down-regulation of the aryl hydrocarbon receptor (AhR) pathway components in hepatic stellate cells. Kdm5b/Kdm5c knockdown resulted in an up-regulation of Ahr, Arnt, and Aip in female but not in male mice, thus preventing fibrosis development. Ahr knockdown in combination with Kdm5b/Kdm5c knockdown restored profibrotic gene expression. Conclusion: KDM5 demethylases contribute to differences between males and females in the alcohol response in the liver. The KDM5/AhR axis is a female-specific mechanism of fibrosis development in alcohol-fed mice.


Subject(s)
Alcohol Drinking , DNA-Binding Proteins , Jumonji Domain-Containing Histone Demethylases , Liver Cirrhosis , Lysine , Alcohol Drinking/adverse effects , Animals , Chromatin Immunoprecipitation , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Female , Histone Demethylases , Jumonji Domain-Containing Histone Demethylases/genetics , Liver Cirrhosis/enzymology , Liver Cirrhosis/genetics , Lysine/genetics , Male , Mice
15.
Hepatology ; 76(5): 1376-1388, 2022 11.
Article in English | MEDLINE | ID: mdl-35313030

ABSTRACT

BACKGROUND AND AIMS: Resolution of pathways that converge to induce deleterious effects in hepatic diseases, such as in the later stages, have potential antifibrotic effects that may improve outcomes. We aimed to explore whether humans and rodents display similar fibrotic signaling networks. APPROACH AND RESULTS: We assiduously mapped kinase pathways using 340 substrate targets, upstream bioinformatic analysis of kinase pathways, and over 2000 random sampling iterations using the PamGene PamStation kinome microarray chip technology. Using this technology, we characterized a large number of kinases with altered activity in liver fibrosis of both species. Gene expression and immunostaining analyses validated many of these kinases as bona fide signaling events. Surprisingly, the insulin receptor emerged as a considerable protein tyrosine kinase that is hyperactive in fibrotic liver disease in humans and rodents. Discoidin domain receptor tyrosine kinase, activated by collagen that increases during fibrosis, was another hyperactive protein tyrosine kinase in humans and rodents with fibrosis. The serine/threonine kinases found to be the most active in fibrosis were dystrophy type 1 protein kinase and members of the protein kinase family of kinases. We compared the fibrotic events over four models: humans with cirrhosis and three murine models with differing levels of fibrosis, including two models of fatty liver disease with emerging fibrosis. The data demonstrate a high concordance between human and rodent hepatic kinome signaling that focalizes, as shown by our network analysis of detrimental pathways. CONCLUSIONS: Our findings establish a comprehensive kinase atlas for liver fibrosis, which identifies analogous signaling events conserved among humans and rodents.


Subject(s)
Liver Diseases , Receptor, Insulin , Humans , Mice , Animals , Receptor, Insulin/metabolism , Rodentia , Liver Cirrhosis/pathology , Liver/pathology , Liver Diseases/pathology , Fibrosis , Protein Kinases/metabolism , Collagen/metabolism , Serine/metabolism , Discoidin Domain Receptors/metabolism , Threonine/metabolism
16.
Front Physiol ; 13: 831004, 2022.
Article in English | MEDLINE | ID: mdl-35264978

ABSTRACT

This review covers some important new aspects of the alcohol-induced communications between liver parenchymal and non-parenchymal cells leading to liver injury development. The information exchange between various cell types may promote end-stage liver disease progression and involves multiple mechanisms, such as direct cell-to-cell interactions, extracellular vesicles (EVs) or chemokines, cytokines, and growth factors contained in extracellular fluids/cell culture supernatants. Here, we highlighted the role of EVs derived from alcohol-exposed hepatocytes (HCs) in activation of non-parenchymal cells, liver macrophages (LM), and hepatic stellate cells (HSC). The review also concentrates on EV-mediated crosstalk between liver parenchymal and non-parenchymal cells in the settings of HIV- and alcohol co-exposure. In addition, we overviewed the literature on the crosstalk between cell death pathways and inflammasome activation in alcohol-activated HCs and macrophages. Furthermore, we covered highly clinically relevant studies on the role of non-inflammatory factors, sinusoidal pressure (SP), and hepatic arterialization in alcohol-induced hepatic fibrogenesis. We strongly believe that the review will disclose major mechanisms of cell-to-cell communications pertained to alcohol-induced liver injury progression and will identify therapeutically important targets, which can be used for alcohol-associated liver disease (ALD) prevention.

17.
JGH Open ; 6(2): 148-151, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35155825

ABSTRACT

In this retrospective study of 164 patients with alcohol-associated hepatitis, we find that the mean absolute monocyte count is 0.95 thousand cells/L, which is significantly higher than the upper limit of normal (0.80 thousand cells/µL) (P < 0.0001). Monocyte count is correlated with disease severity as measured by MELD score (R = 0.400, P < 0.0001) and Maddrey discriminant function (R = 0.330, P < 0.0001).

18.
Hepatol Commun ; 6(6): 1373-1391, 2022 06.
Article in English | MEDLINE | ID: mdl-35084807

ABSTRACT

Alcohol-associated liver disease (ALD) is a major cause of alcohol-related mortality. Sex differences in sensitivity to ALD are well described, but these are often disregarded in studies of ALD development. We aimed to define sex-specific pathways in liver exposed to alcohol. Mice were fed the Lieber-DeCarli alcohol liquid diet or a combination of a high-fat diet with alcohol in water. Single-cell RNA sequencing (scRNA-Seq) was performed on liver cells from male and female mice. Mice were treated with adeno-associated virus (AAV)-short hairpin (sh)Control or AAV-sh lysine demethylase 5b (shKdm5b) and/or AAV-shKdm5c vectors. Changes after Kdm5b/5c knockdown were assessed by RNA-Seq and histone H3 lysine K4 (H3K4)me3 chromatin immunoprecipitation-Seq analysis. Using scRNA-Seq analysis, we found several sex-specific pathways induced by alcohol, including pathways related to lipid metabolism and hepatocyte differentiation. Bioinformatic analysis suggested that two epigenetic regulators, H3K4-specific lysine demethylases KDM5B and KDM5C, contribute to sex differences in alcohol effects. We found that in alcohol-fed male mice, KDM5B and KDM5C are involved in hepatocyte nuclear factor 4 alpha (Hnf4a) down-regulation, hepatocyte dedifferentiation, and an increase in fatty acid synthesis. This effect is mediated by alcohol-induced KDM5B and KDM5C recruitment to Hnf4a and other gene promoters in male but not in female mice. Kdm5b and Kdm5c knockdown or KDM5-inhibitor treatment prevented alcohol-induced lipid accumulation and restored levels of Hnf4a and other hepatocyte differentiation genes in male mice. In addition, Kdm5b knockdown prevented hepatocellular carcinoma development in male mice by up-regulating Hnf4a and decreasing tumor cell proliferation. Conclusion: Alcohol specifically activates KDM5 demethylases in male mice to promote alcohol-induced hepatocyte dedifferentiation and tumor development.


Subject(s)
Carcinoma, Hepatocellular , Chemical and Drug Induced Liver Injury, Chronic , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Female , Hepatocyte Nuclear Factor 4 , Hepatocytes/metabolism , Liver Neoplasms/genetics , Lysine , Male , Mice
19.
Alcohol Clin Exp Res ; 45(10): 1980-1993, 2021 10.
Article in English | MEDLINE | ID: mdl-34523155

ABSTRACT

BACKGROUND: Mouse models of alcohol-associated liver disease vary greatly in their ease of implementation and the pathology they produce. Effects range from steatosis and mild inflammation with the Lieber-DeCarli liquid diet to severe inflammation, fibrosis, and pyroptosis seen with the Tsukamoto-French intragastric feeding model. Implementation of all of these models is limited by the labor-intensive nature of the protocols and the specialized skills necessary for successful intragastric feeding. We thus sought to develop a new model to reproduce features of alcohol-induced inflammation and fibrosis with minimal operational requirements. METHODS: Over a 16-week period, mice were fed ad libitum with a pelleted high-fat Western diet (WD; 40% calories from fat) and alcohol added to the drinking water. We found the optimal alcohol consumption to be that at which the alcohol concentration was 20% for 4 days and 10% for 3 days per week. Control mice received WD pellets with water alone. RESULTS: Alcohol consumption was 18 to 20 g/kg/day in males and 20 to 22 g/kg/day in females. Mice in the alcohol groups developed elevated serum transaminase levels after 12 weeks in males and 10 weeks in females. At 16 weeks, both males and females developed liver inflammation, steatosis, and pericellular fibrosis. Control mice on WD without alcohol had mild steatosis only. Alcohol-fed mice showed reduced HNF4α mRNA and protein expression. HNF4α is a master regulator of hepatocyte differentiation, down-regulation of which is a known driver of hepatocellular failure in alcoholic hepatitis. CONCLUSION: A simple-to-administer, 16-week WD alcohol model recapitulates the inflammatory, fibrotic, and gene expression aspects of human alcohol-associated steatohepatitis.


Subject(s)
Diet, Western , Disease Models, Animal , Ethanol/administration & dosage , Fatty Liver, Alcoholic/pathology , Liver/pathology , Animals , Female , Fibrosis , Hepatocyte Nuclear Factor 4/metabolism , Liver/immunology , Liver/metabolism , Male , Mice, Inbred C57BL
20.
Hepatol Commun ; 5(5): 812-829, 2021 May.
Article in English | MEDLINE | ID: mdl-34027271

ABSTRACT

Protein arginine methyl transferase 1 (PRMT1) is the main enzyme for cellular arginine methylation. It regulates many aspects of liver biology including inflammation, lipid metabolism, and proliferation. Previously we identified that PRMT1 is necessary for protection from alcohol-induced liver injury. However, many PRMT1 targets in the liver after alcohol exposure are not yet identified. We studied the changes in the PRMT1-dependent arginine methylated proteome after alcohol feeding in mouse liver using mass spectrometry. We found that arginine methylation of the RNA-binding protein (heterogeneous nuclear ribonucleoprotein [hnRNP]) H1 is mediated by PRMT1 and is altered in alcohol-fed mice. PRMT1-dependent methylation suppressed hnRNP H1 binding to several messenger RNAs of complement pathway including complement component C3. We found that PRMT1-dependent hnRNP H methylation suppressed complement component expression in vitro, and phosphorylation is required for this function of PRMT1. In agreement with that finding, hepatocyte-specific PRMT1 knockout mice had an increase in complement component expression in the liver. Excessive complement expression in alcohol-fed PRMT1 knockout mice resulted in further complement activation and an increase in serum C3a and C5a levels, which correlated with inflammation in multiple organs including lung and adipose tissue. Using specific inhibitors to block C3aR and C5aR receptors, we were able to prevent lung and adipose tissue inflammation without affecting inflammation in the liver or liver injury. Conclusion: Taken together, these data suggest that PRMT1-dependent suppression of complement production in the liver is necessary for prevention of systemic inflammation in alcohol-fed mice. C3a and C5a play a role in this liver-lung and liver-adipose interaction in alcohol-fed mice deficient in liver arginine methylation.

SELECTION OF CITATIONS
SEARCH DETAIL
...