Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 9(1): 3563, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30177697

ABSTRACT

Static compression experiments over 4 Mbar are rare, yet critical for developing accurate fundamental physics and chemistry models, relevant to a range of topics including modeling planetary interiors. Here we show that focused ion beam crafted toroidal single-crystal diamond anvils with ~9.0 µm culets are capable of producing pressures over 5 Mbar. The toroidal surface prevents gasket outflow and provides a means to stabilize the central culet. We have reached a maximum pressure of ~6.15 Mbar using Re as in situ pressure marker, a pressure regime typically accessed only by double-stage diamond anvils and dynamic compression platforms. Optimizing single-crystal diamond anvil design is key for extending the pressure range over which studies can be performed in the diamond anvil cell.

2.
J Phys Condens Matter ; 29(9): 09LT02, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28004645

ABSTRACT

At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.

3.
J Phys Condens Matter ; 26(25): 255603, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24888379

ABSTRACT

Iridium-based 5d transition-metal oxides are attractive candidates for the study of correlated electronic states due to the interplay of enhanced crystal-field, Coulomb and spin-orbit interaction energies. At ambient pressure, these conditions promote a novel Jeff = 1/2 Mott-insulating state, characterized by a gap of the order of ~0.1 eV. We present high-pressure electrical resistivity measurements of single crystals of Sr2IrO4 and Sr3Ir2O7. While no indications of a pressure-induced metallic state up to 55 GPa were found in Sr2IrO4, a strong decrease of the gap energy and of the resistance of Sr3Ir2O7 between ambient pressure and 104 GPa confirm that this compound is in the proximity of a metal-insulator transition.

4.
Phys Rev Lett ; 111(8): 087001, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010465

ABSTRACT

Simultaneous low-temperature electrical resistivity and Hall effect measurements were performed on single-crystalline Bi2Se3 under applied pressures up to 50 GPa. As a function of pressure, superconductivity is observed to onset above 11 GPa with a transition temperature Tc and upper critical field Hc2 that both increase with pressure up to 30 GPa, where they reach maximum values of 7 K and 4 T, respectively. Upon further pressure increase, Tc remains anomalously constant up to the highest achieved pressure. Conversely, the carrier concentration increases continuously with pressure, including a tenfold increase over the pressure range where Tc remains constant. Together with a quasilinear temperature dependence of Hc2 that exceeds the orbital and Pauli limits, the anomalously stagnant pressure dependence of Tc points to an unconventional pressure-induced pairing state in Bi2Se3 that is unique among the superconducting topological insulators.

5.
J Phys Condens Matter ; 24(49): 495702, 2012 Dec 12.
Article in English | MEDLINE | ID: mdl-23148047

ABSTRACT

High-pressure electrical resistance measurements have been performed on single crystal Ba(0.5)Sr(0.5)Fe(2)As(2) platelets to pressures of 16 GPa and temperatures down to 10 K using designer diamond anvils under quasi-hydrostatic conditions with an insulating steatite pressure medium. The resistance measurements show evidence of pressure-induced superconductivity with an onset transition temperature at ∼31 K and zero resistance at ∼22 K for a pressure of 3.3 GPa. The transition temperature decreases gradually with increasing pressure before completely disappearing for pressures above 12 GPa. The present results provide experimental evidence that a solid solution of two 122-type materials, i.e., Ba(1-x)Sr(x)Fe(2)As(2) (0 < x < 1), can also exhibit superconductivity under high pressure.

6.
J Phys Condens Matter ; 24(3): 035602, 2012 Jan 25.
Article in English | MEDLINE | ID: mdl-22183616

ABSTRACT

We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 toward increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance Δρ(xx) that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3.

7.
Rev Sci Instrum ; 80(1): 013905, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19191445

ABSTRACT

Small electrical heating elements have been lithographically fabricated onto the culets of "designer" diamond anvils for the purpose of performing high-pressure and high-temperature experiments on metals. The thin-film geometry of the heating elements makes them very resistant to plastic deformation during high-pressure loading, and their small cross-sectional area enables them to be electrically heated to very high temperatures with relatively modest currents (approximately = 1 A). The technique also offers excellent control and temporal stability of the sample temperature. Test experiments on gold samples have been performed for pressures up to 21 GPa and temperatures of nearly 2000 K.

8.
J Nanosci Nanotechnol ; 1(2): 143-7, 2001 Jun.
Article in English | MEDLINE | ID: mdl-12914044

ABSTRACT

Single-wall carbon nanotube samples were studied under high pressures to 62 GPa using designer diamond anvils with buried electrical microprobes that allowed for monitoring of the four-probe electrical resistance at elevated pressure. After initial densification, the electrical resistance shows a steady increase from 3 to 42 GPa, followed by a sharp rise above 42 GPa. This sharp rise in electrical resistance at high pressures is attributed to opening of an energy band gap with compression. Nanoindentation hardness measurements on the pressure-treated carbon nanotube samples gave a hardness value of 0.50 +/- 0.03 GPa. This hardness value is approximately 2 orders of magnitude lower than the amorphous carbon phase produced in fullerenes under similar conditions. Therefore, the pressure treatment of single-wall carbon nanotubes to 62 GPa did not produce a superhard carbon phase.


Subject(s)
Crystallization/methods , Electrochemistry/methods , Materials Testing/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Diamond , Electric Impedance , Electrochemistry/instrumentation , Electrodes , Hardness , Molecular Conformation , Nanotubes, Carbon/isolation & purification , Pressure , Surface Properties
9.
Phys Rev Lett ; 85(25): 5364-7, 2000 Dec 18.
Article in English | MEDLINE | ID: mdl-11135997

ABSTRACT

We compare electrical and mechanical properties of C70 fullerene with high purity graphite to 48 GPa at room temperature using designer diamond anvils with embedded electrical microprobes. The electrical resistance of C70 shows a minimum at 20 GPa with transformation to an amorphous insulating phase complete above 35 GPa, while graphite remains conducting. Nanoindentation shows hardness values 220 times larger for the pressure quenched amorphous phase than for similarly treated graphite. Our studies establish that the amorphous carbon phase produced from C70 has unique properties not attainable from graphite.

10.
Science ; 273(5277): 936-8, 1996 Aug 16.
Article in English | MEDLINE | ID: mdl-8688072

ABSTRACT

Electrical conductivities of molecular hydrogen in Jupiter were calculated by scaling electrical conductivities measured at shock pressures in the range of 10 to 180 gigapascals (0.1 to 1.8 megabars) and temperatures to 4000 kelvin, representative of conditions inside Jupiter. Jupiter's magnetic field is caused by convective dynamo motion of electrically conducting fluid hydrogen. The data imply that Jupiter should become metallic at 140 gigapascals in the fluid, and the electrical conductivity in the jovian molecular envelope at pressures up to metallization is about an order of magnitude larger than expected previously. The large magnetic field is produced in the molecular envelope closer to the surface than previously thought.


Subject(s)
Hydrogen , Jupiter , Electric Conductivity , Helium , Magnetics , Pressure , Temperature
11.
Science ; 231(4742): 1136-8, 1986 Mar 07.
Article in English | MEDLINE | ID: mdl-17818543

ABSTRACT

X-ray diffraction studies have been carried out on alkali halide samples 10 micrometers in diameter (volume 10(-9) cubic centimeter) subjected to megabar pressures in the diamond anvil cell. Energy-dispersive techniques and a synchrotron source were used. These measurements can be used to detect crystallographic phase transitions. Cesium iodide was subjected to pressures of 95 gigapascals (fractional volume of 46 percent) and rubidium iodide to pressures of 89 gigapascals (fractional volume of 39 percent). Cesium iodide showed a transformation from the cubic B2 phase (cesium chloride structure) to a tetragonal phase and then to an orthorhombic phase, which was stable to 95 gigapascals. Rubidium iodide showed only a transition from the low-pressure cubic B1 phase (sodium chloride structure) to the B2 phase, which was stable up to 89 gigapascals.

SELECTION OF CITATIONS
SEARCH DETAIL
...