Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(2): e4897, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38284488

ABSTRACT

The HEMK2 protein methyltransferase has been described as glutamine methyltransferase catalyzing ERF1-Q185me1 and lysine methyltransferase catalyzing H4K12me1. Methylation of two distinct target residues is unique for this class of enzymes. To understand the specific catalytic adaptations of HEMK2 allowing it to master this chemically challenging task, we conducted a detailed investigation of the substrate sequence specificities of HEMK2 for Q- and K-methylation. Our data show that HEMK2 prefers methylation of Q over K at peptide and protein level. Moreover, the ERF1 sequence is strongly preferred as substrate over the H4K12 sequence. With peptide SPOT array methylation experiments, we show that Q-methylation preferentially occurs in a G-Q-X3 -R context, while K-methylation prefers S/T at the first position of the motif. Based on this, we identified novel HEMK2 K-methylation peptide substrates with sequences taken from human proteins which are methylated with high activity. Since H4K12 methylation by HEMK2 was very low, other protein lysine methyltransferases were examined for their ability to methylate the H4K12 site. We show that SETD6 has a high H4K12me1 methylation activity (about 1000-times stronger than HEMK2) and this enzyme is mainly responsible for H4K12me1 in DU145 prostate cancer cells.


Subject(s)
Glutamine , Lysine , Site-Specific DNA-Methyltransferase (Adenine-Specific) , Humans , Glutamine/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Lysine/metabolism , Methylation , Peptides/chemistry , Protein Methyltransferases/metabolism , Substrate Specificity , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics
2.
J Biol Chem ; 299(10): 105236, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690684

ABSTRACT

The protein lysine methyltransferase SET domain-containing protein 6 (SETD6) has been shown to influence different cellular activities and to be critically involved in the regulation of diverse developmental and pathological processes. However, the upstream signals that regulate the mRNA expression of SETD6 are not known. Bioinformatic analysis revealed that the SETD6 promoter has a binding site for the transcription factor E2F1. Using various experimental approaches, we show that E2F1 binds to the SETD6 promoter and regulates SETD6 mRNA expression. Our further observation that this phenomenon is SETD6 dependent suggested that SETD6 and E2F1 are linked. We next demonstrate that SETD6 monomethylates E2F1 specifically at K117 in vitro and in cells. Finally, we show that E2F1 methylation at K117 positively regulates the expression level of SETD6 mRNA. Depletion of SETD6 or overexpression of E2F1 K117R mutant, which cannot be methylated by SETD6, reverses the effect. Taken together, our data provide evidence for a positive feedback mechanism, which regulates the expression of SETD6 by E2F1 in a SETD6 methylation-dependent manner, and highlight the importance of protein lysine methyltransferases and lysine methylation signaling in the regulation of gene transcription.

4.
J Biol Chem ; 299(6): 104796, 2023 06.
Article in English | MEDLINE | ID: mdl-37150325

ABSTRACT

Protein lysine methyltransferases (PKMTs) play essential roles in gene expression regulation and cancer development. Somatic mutations in PKMTs are frequently observed in cancer cells. In biochemical experiments, we show here that the NSD1 mutations Y1971C, R2017Q, and R2017L observed mostly in solid cancers are catalytically inactive suggesting that NSD1 acts as a tumor suppressor gene in these tumors. In contrast, the frequently observed T1150A in NSD2 and its T2029A counterpart in NSD1, both observed in leukemia, are hyperactive and introduce up to three methyl groups in H3K36 in biochemical and cellular assays, while wildtype NSD2 and NSD1 only introduce up to two methyl groups. In Molecular Dynamics simulations, we determined key mechanistic and structural features controlling the product specificity of this class of enzymes. Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Lysine , Methylation , Neoplasms , Humans , Histones/chemistry , Histones/metabolism , Lysine/chemistry , Lysine/metabolism , Neoplasms/enzymology , Neoplasms/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mutation
5.
Protein Sci ; 32(1): e4542, 2023 01.
Article in English | MEDLINE | ID: mdl-36519786

ABSTRACT

The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Methyl-CpG-Binding Protein 2 , Binding Sites , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Methyl-CpG-Binding Protein 2/chemistry , Methyl-CpG-Binding Protein 2/metabolism , NIH 3T3 Cells , Peptides/chemistry , Peptides/metabolism , Protein Binding , Histones/chemistry , Histones/metabolism , Humans
6.
FEBS J ; 290(8): 2115-2126, 2023 04.
Article in English | MEDLINE | ID: mdl-36416580

ABSTRACT

In previous work, we have developed a DNA methylation-based epigenetic memory system that operates in Escherichia coli to detect environmental signals, trigger a phenotypic switch of the cells and store the information in DNA methylation. The system is based on the CcrM DNA methyltransferase and a synthetic zinc finger (ZnF4), which binds DNA in a CcrM methylation-dependent manner and functions as a repressor for a ccrM gene expressed together with an egfp reporter gene. Here, we developed a reversible reset for this memory system by adding an increased concentration of ZnSO4 to the bacterial cultivation medium and demonstrate that one bacterial culture could be reversibly switched ON and OFF in several cycles. We show that a previously developed differential equation model of the memory system can also describe the new data. Then, we studied the long-term stability of the ON-state of the system over approximately 100 cell divisions showing a gradual loss of ON-state signal starting after 4 days of cultivation that is caused by individual cells switching from an ON- into the OFF-state. Over time, the methylation of the ZnF4-binding sites is not fully maintained leading to an increased OFF switching probability of cells, because stronger binding of ZnF4 to partially demethylated operator sites leads to further reductions in the cellular concentrations of CcrM. These data will support future design to further stabilize the ON-state and enforce the binary switching behaviour of the system. Together with the development of a reversible OFF switch, our new findings strongly increase the capabilities of bacterial epigenetic biosensors.


Subject(s)
Epigenetic Memory , Gene Expression Regulation, Bacterial , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Bacteria/metabolism , DNA Methylation , DNA/metabolism
7.
Nat Commun ; 13(1): 7636, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496439

ABSTRACT

N-degron pathway plays an important role in the protein quality control and maintenance of cellular protein homeostasis. ZER1 and ZYG11B, the substrate receptors of the Cullin 2-RING E3 ubiquitin ligase (CRL2), recognize N-terminal (Nt) glycine degrons and participate in the Nt-myristoylation quality control through the Gly/N-degron pathway. Here we show that ZER1 and ZYG11B can also recognize small Nt-residues other than glycine. Specifically, ZER1 binds better to Nt-Ser, -Ala, -Thr and -Cys than to -Gly, while ZYG11B prefers Nt-Gly but also has the capacity to recognize Nt-Ser, -Ala and -Cys in vitro. We found that Nt-Ser, -Ala and -Cys undergo Nt-acetylation catalyzed by Nt-acetyltransferase (NAT), thereby shielding them from recognition by ZER1/ZYG11B in cells. Instead, ZER1/ZYG11B readily targets a selection of small Nt-residues lacking Nt-acetylation for degradation in NAT-deficient cells, implicating its role in the Nt-acetylation quality control. Furthermore, we present the crystal structures of ZER1 and ZYG11B bound to various small Nt-residues and uncover the molecular mechanism of non-acetylated substrate recognition by ZER1 and ZYG11B.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Acetylation , Myristic Acid , Glycine/metabolism
8.
ACS Synth Biol ; 11(7): 2445-2455, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35749318

ABSTRACT

Oscillations are an important component in biological systems; grasping their mechanisms and regulation, however, is difficult. Here, we use the theory of dynamical systems to support the design of oscillatory systems based on epigenetic control elements. Specifically, we use results that extend the Poincaré-Bendixson theorem for monotone control systems that are coupled to a negative feedback circuit. The methodology is applied to a synthetic epigenetic memory system based on DNA methylation that serves as a monotone control system, which is coupled to a negative feedback. This system is generally able to show sustained oscillations according to its structure; however, a first experimental implementation showed that fine-tuning of several parameters is required. We provide design support by exploring the experimental design space using systems-theoretic analysis of a computational model.


Subject(s)
Feedback, Physiological , Protein Processing, Post-Translational , Epigenesis, Genetic/genetics , Feedback , Methylation , Models, Biological
9.
Methods Mol Biol ; 2529: 313-325, 2022.
Article in English | MEDLINE | ID: mdl-35733022

ABSTRACT

Posttranslational methylation of amino acid side chains in proteins mainly occurs on lysine, arginine, glutamine, and histidine residues. It is introduced by different protein methyltransferases (PMTs) and regulates many aspects of protein function including stability, activity, localization, and protein/protein interactions. Although the biological effects of PMTs are mediated by their methylation substrates, the full substrate spectrum of most PMTs is not known. For many PMTs, their activity on a particular potential substrate depends, among other factors, on the peptide sequence containing the target residue for methylation. In this protocol, we describe the application of SPOT peptide arrays to investigate the substrate specificity of PMTs and identify novel substrates. Methylation of SPOT peptide arrays makes it possible to study the methylation of many different peptides in one experiment at reasonable costs and thereby provides detailed information about the specificity of the PMT under investigation. In these experiments, a known substrate sequence is used as template to design a SPOT peptide array containing peptides with single amino acid exchanges at all positions of the sequence. Methylation of the array with the PMT provides detailed preferences for each amino acid at each position in the substrate sequence, yielding a substrate sequence specificity profile. This information can then be used to identify novel potential PMT substrates by in silico data base searches. Methylation of novel substrate candidates can be validated in SPOT arrays at peptide level, followed by validation at protein level in vitro and in cells.


Subject(s)
Peptides , Protein Methyltransferases , Amino Acid Sequence , Lysine/metabolism , Methylation , Methyltransferases/metabolism , Peptides/metabolism , Protein Methyltransferases/metabolism , Substrate Specificity
10.
Biochimie ; 198: 86-91, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35341929

ABSTRACT

The H3.3 G34W mutation has been observed in 90% of the patients affected by giant cell tumor of bone (GCTB). It had been shown to reduce the activity of the SETD2 H3K36 protein lysine methyltransferase (PKMT) and lead to genome wide changes in epigenome modifications including a global reduction in DNA methylation. Here, we investigated the effect of the H3.3 G34W mutation on the activity of the H3K36me2 methyltransferase NSD1, because NSD1 is known to play an important role in the differentiation of chondrocytes and osteoblasts. Unexpectedly, we observed that H3.3 G34W has a gain-of-function effect and it stimulates K36 methylation by NSD1 by about 2.3-fold with peptide substrates and 6.3-fold with recombinant nucleosomal substrates. This effect is specific for NSD1, as NSD2 shows only a mild stimulation on G34W substrates. The potential downstream effects of the G34W induced hyperactivity of NSD1 on DNA methylation, H3K27me3, histone acetylation and splicing are discussed.


Subject(s)
Histone-Lysine N-Methyltransferase , Histones , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Methylation , Mutation , Protein Processing, Post-Translational
11.
Commun Chem ; 5(1): 139, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36697904

ABSTRACT

Protein lysine methyltransferases have important regulatory functions in cells, but mechanisms determining their activity and specificity are incompletely understood. Naturally, SETD2 introduces H3K36me3, but previously an artificial super-substrate (ssK36) was identified, which is methylated >100-fold faster. The ssK36-SETD2 complex structure cannot fully explain this effect. We applied molecular dynamics (MD) simulations and biochemical experiments to unravel the mechanistic basis of the increased methylation of ssK36, considering peptide conformations in solution, association of peptide and enzyme, and formation of transition-state (TS) like conformations of the enzyme-peptide complex. We observed in MD and FRET experiments that ssK36 adopts a hairpin conformation in solution with V35 and K36 placed in the loop. The hairpin conformation has easier access into the active site of SETD2 and it unfolds during the association process. Peptide methylation experiments revealed that introducing a stable hairpin conformation in the H3K36 peptide increased its methylation by SETD2. In MD simulations of enzyme-peptide complexes, the ssK36 peptide approached TS-like structures more frequently than H3K36 and distinct, substrate-specific TS-like structures were observed. Hairpin association, hairpin unfolding during association, and substrate-specific catalytically competent conformations may also be relevant for other PKMTs and hairpins could represent a promising starting point for SETD2 inhibitor development.

12.
Molecules ; 26(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34946664

ABSTRACT

Glioblastoma (GBM) is the most malignant and aggressive form of glioma and is associated with a poor survival rate. Latest generation Tumour Necrosis Factor Related Apoptosis-Inducing Ligand (TRAIL)-based therapeutics potently induce apoptosis in cancer cells, including GBM cells, by binding to death receptors. However, the blood-brain barrier (BBB) is a major obstacle for these biologics to enter the central nervous system (CNS). We therefore investigated if antibody-based fusion proteins that combine hexavalent TRAIL and angiopep-2 (ANG2) moieties can be developed, with ANG2 promoting receptor-mediated transcytosis (RMT) across the BBB. We demonstrate that these fusion proteins retain the potent apoptosis induction of hexavalent TRAIL-receptor agonists. Importantly, blood-brain barrier cells instead remained highly resistant to this fusion protein. Binding studies indicated that ANG2 is active in these constructs but that TRAIL-ANG2 fusion proteins bind preferentially to BBB endothelial cells via the TRAIL moiety. Consequently, transport studies indicated that TRAIL-ANG2 fusion proteins can, in principle, be shuttled across BBB endothelial cells, but that low TRAIL receptor expression on BBB endothelial cells interferes with efficient transport. Our work therefore demonstrates that TRAIL-ANG2 fusion proteins remain highly potent in inducing apoptosis, but that therapeutic avenues will require combinatorial strategies, such as TRAIL-R masking, to achieve effective CNS transport.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Neoplasms , Endothelium/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma , Neoplasm Proteins , Peptides/pharmacology , TNF-Related Apoptosis-Inducing Ligand , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Glioblastoma/drug therapy , Glioblastoma/metabolism , HCT116 Cells , HEK293 Cells , Humans , Neoplasm Proteins/agonists , Neoplasm Proteins/biosynthesis , TNF-Related Apoptosis-Inducing Ligand/agonists , TNF-Related Apoptosis-Inducing Ligand/biosynthesis
13.
Life (Basel) ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357075

ABSTRACT

SUV39H1 and SUV39H2 were the first protein lysine methyltransferases that were identified more than 20 years ago. Both enzymes introduce di- and trimethylation at histone H3 lysine 9 (H3K9) and have important roles in the maintenance of heterochromatin and gene repression. They consist of a catalytically active SET domain and a chromodomain, which binds H3K9me2/3 and has roles in enzyme targeting and regulation. The heterochromatic targeting of SUV39H enzymes is further enhanced by the interaction with HP1 proteins and repeat-associated RNA. SUV39H1 and SUV39H2 recognize an RKST motif with additional residues on both sides, mainly K4 in the case of SUV39H1 and G12 in the case of SUV39H2. Both SUV39H enzymes methylate different non-histone proteins including RAG2, DOT1L, SET8 and HupB in the case of SUV39H1 and LSD1 in the case of SUV39H2. Both enzymes are expressed in embryonic cells and have broad expression profiles in the adult body. SUV39H1 shows little tissue preference except thymus, while SUV39H2 is more highly expressed in the brain, testis and thymus. Both enzymes are connected to cancer, having oncogenic or tumor-suppressive roles depending on the tumor type. In addition, SUV39H2 has roles in the brain during early neurodevelopment.

14.
Mol Psychiatry ; 26(12): 7550-7559, 2021 12.
Article in English | MEDLINE | ID: mdl-34262135

ABSTRACT

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin ß (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Subject(s)
Autistic Disorder , Histone-Lysine N-Methyltransferase/genetics , Animals , Brain/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Mice , Protocadherins
15.
Nucleic Acids Res ; 49(8): 4350-4370, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33823549

ABSTRACT

The lysine specific demethylase 1 (LSD1) plays a pivotal role in cellular differentiation by regulating the expression of key developmental genes in concert with different coregulatory proteins. This process is impaired in different cancer types and incompletely understood. To comprehensively identify functional coregulators of LSD1, we established a novel tractable fluorescent reporter system to monitor LSD1 activity in living cells. Combining this reporter system with a state-of-the-art multiplexed RNAi screen, we identify the DEAD-box helicase 19A (DDX19A) as a novel coregulator and demonstrate that suppression of Ddx19a results in an increase of R-loops and reduced LSD1-mediated gene silencing. We further show that DDX19A binds to tri-methylated lysine 27 of histone 3 (H3K27me3) and it regulates gene expression through the removal of transcription promoting R-loops. Our results uncover a novel transcriptional regulatory cascade where the downregulation of genes is dependent on the LSD1 mediated demethylation of histone H3 lysine 4 (H3K4). This allows the polycomb repressive complex 2 (PRC2) to methylate H3K27, which serves as a binding site for DDX19A. Finally, the binding of DDX19A leads to the efficient removal of R-loops at active promoters, which further de-represses LSD1 and PRC2, establishing a positive feedback loop leading to a robust repression of the target gene.


Subject(s)
Gene Expression Regulation, Neoplastic , Gene Silencing , Histone Demethylases/genetics , Neoplasms/genetics , Nucleocytoplasmic Transport Proteins/metabolism , R-Loop Structures/genetics , Animals , Binding Sites , Enhancer Elements, Genetic , Genes, Reporter , Histones/metabolism , Homeostasis , Humans , Methylation , Mice , NIH 3T3 Cells , Nucleocytoplasmic Transport Proteins/genetics , Promoter Regions, Genetic , RNA Interference , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription, Genetic
16.
FEBS J ; 288(19): 5692-5707, 2021 10.
Article in English | MEDLINE | ID: mdl-33774905

ABSTRACT

In recent years, epigenetic memory systems have been developed based on DNA methylation and positive feedback systems. Achieving a robust design for these systems is generally a challenging and multifactorial task. We developed and validated a novel mathematical model to describe methylation-based epigenetic memory systems that capture switching dynamics of methylation levels and methyltransferase amounts induced by different inputs. A bifurcation analysis shows that the system operates in the bistable range, but in its current setup is not robust to changes in parameters. An expansion of the model captures heterogeneity of cell populations by accounting for distributed cell division rates. Simulations predict that the system is highly sensitive to variations in temperature, which affects cell division and the efficiency of the zinc finger repressor. A moderate decrease in temperature leads to a highly heterogeneous response to input signals and bistability on a single-cell level. The predictions of our model were confirmed by flow cytometry experiments conducted in this study. Overall, the results of our study give insights into the functional mechanisms of methylation-based memory systems and demonstrate that the switching dynamics can be highly sensitive to experimental conditions.


Subject(s)
Cell Division/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Models, Biological , Feedback, Physiological , Flow Cytometry , Single-Cell Analysis , Systems Biology/trends , Zinc Fingers/genetics
17.
Nat Commun ; 12(1): 891, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33563959

ABSTRACT

Post-translational methylation plays a crucial role in regulating and optimizing protein function. Protein histidine methylation, occurring as the two isomers 1- and 3-methylhistidine (1MH and 3MH), was first reported five decades ago, but remains largely unexplored. Here we report that METTL9 is a broad-specificity methyltransferase that mediates the formation of the majority of 1MH present in mouse and human proteomes. METTL9-catalyzed methylation requires a His-x-His (HxH) motif, where "x" is preferably a small amino acid, allowing METTL9 to methylate a number of HxH-containing proteins, including the immunomodulatory protein S100A9 and the NDUFB3 subunit of mitochondrial respiratory Complex I. Notably, METTL9-mediated methylation enhances respiration via Complex I, and the presence of 1MH in an HxH-containing peptide reduced its zinc binding affinity. Our results establish METTL9-mediated 1MH as a pervasive protein modification, thus setting the stage for further functional studies on protein histidine methylation.


Subject(s)
Methylhistidines/metabolism , Methyltransferases/metabolism , Proteome/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , Histidine/metabolism , Humans , Mammals/classification , Mammals/genetics , Mammals/metabolism , Methylation , Methyltransferases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mutation , Protein Processing, Post-Translational , Proteome/chemistry , Substrate Specificity , Zinc/metabolism
18.
Int J Mol Sci ; 21(22)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266419

ABSTRACT

Clr4 is a histone H3 lysine 9 methyltransferase in Schizosaccharomyces pombe that is essential for heterochromatin formation. Previous biochemical and structural studies have shown that Clr4 is in an autoinhibited state in which an autoregulatory loop (ARL) blocks the active site. Automethylation of lysine residues in the ARL relieves autoinhibition. To investigate the mechanism of Clr4 regulation by autoinhibition and automethylation, we exchanged residues in the ARL by site-directed mutagenesis leading to stimulation or inhibition of automethylation and corresponding changes in Clr4 catalytic activity. Furthermore, we demonstrate that Clr4 prefers monomethylated (H3K9me1) over unmodified (H3K9me0) histone peptide substrates, similar to related human enzymes and, accordingly, H3K9me1 is more efficient in overcoming autoinhibition. Due to enzyme activation by automethylation, we observed a sigmoidal dependence of Clr4 activity on the AdoMet concentration, with stimulation at high AdoMet levels. In contrast, an automethylation-deficient mutant showed a hyperbolic Michaelis-Menten type relationship. These data suggest that automethylation of the ARL could act as a sensor for AdoMet levels in cells and regulate the generation and maintenance of heterochromatin accordingly. This process could connect epigenome modifications with the metabolic state of cells. As other human protein lysine methyltransferases (for example, PRC2) also use automethylation/autoinhibition mechanisms, our results may provide a model to describe their regulation as well.


Subject(s)
Cell Cycle Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Allosteric Regulation , Catalytic Domain , Histones/metabolism , Kinetics , Methylation
19.
Commun Biol ; 3(1): 600, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33077812

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Commun Biol ; 3(1): 511, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32939018

ABSTRACT

SETD2 catalyzes methylation at lysine 36 of histone H3 and it has many disease connections. We investigated the substrate sequence specificity of SETD2 and identified nine additional peptide and one protein (FBN1) substrates. Our data showed that SETD2 strongly prefers amino acids different from those in the H3K36 sequence at several positions of its specificity profile. Based on this, we designed an optimized super-substrate containing four amino acid exchanges and show by quantitative methylation assays with SETD2 that the super-substrate peptide is methylated about 290-fold more efficiently than the H3K36 peptide. Protein methylation studies confirmed very strong SETD2 methylation of the super-substrate in vitro and in cells. We solved the structure of SETD2 with bound super-substrate peptide containing a target lysine to methionine mutation, which revealed better interactions involving three of the substituted residues. Our data illustrate that substrate sequence design can strongly increase the activity of protein lysine methyltransferases.


Subject(s)
Histone-Lysine N-Methyltransferase/economics , Protein Processing, Post-Translational/genetics , Substrate Specificity/genetics , Amino Acid Sequence/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Lysine , Methylation , Mutation/genetics , Peptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...