Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Thromb Haemost ; 17(2): 271-282, 2019 02.
Article in English | MEDLINE | ID: mdl-30618125

ABSTRACT

New evidence has stirred up a long-standing but undeservedly forgotten interest in the role of erythrocytes, or red blood cells (RBCs), in blood clotting and its disorders. This review summarizes the most recent research that describes the involvement of RBCs in hemostasis and thrombosis. There are both quantitative and qualitative changes in RBCs that affect bleeding and thrombosis, as well as interactions of RBCs with cellular and molecular components of the hemostatic system. The changes in RBCs that affect hemostasis and thrombosis include RBC counts or hematocrit (modulating blood rheology through viscosity) and qualitative changes, such as deformability, aggregation, expression of adhesive proteins and phosphatidylserine, release of extracellular microvesicles, and hemolysis. The pathogenic mechanisms implicated in thrombotic and hemorrhagic risk include variable adherence of RBCs to the vessel wall, which depends on the functional state of RBCs and/or endothelium, modulation of platelet reactivity and platelet margination, alterations of fibrin structure and reduced susceptibility to fibrinolysis, modulation of nitric oxide availability, and the levels of von Willebrand factor and factor VIII in blood related to the ABO blood group system. RBCs are involved in platelet-driven contraction of clots and thrombi that results in formation of a tightly packed array of polyhedral erythrocytes, or polyhedrocytes, which comprises a nearly impermeable barrier that is important for hemostasis and wound healing. The revisited notion of the importance of RBCs is largely based on clinical and experimental associations between RBCs and thrombosis or bleeding, implying that RBCs are a prospective therapeutic target in hemostatic and thrombotic disorders.


Subject(s)
Erythrocytes/metabolism , Hemorrhage/blood , Hemostasis , Thrombosis/blood , Animals , Blood Coagulation , Blood Platelets/metabolism , Endothelial Cells/metabolism , Humans , Signal Transduction
2.
J Thromb Haemost ; 16(12): 2359-2361, 2018 12.
Article in English | MEDLINE | ID: mdl-30378750

Subject(s)
Fibrin , Thrombosis , Biofilms , Humans
3.
J Thromb Haemost ; 16(5): 973-983, 2018 05.
Article in English | MEDLINE | ID: mdl-29488682

ABSTRACT

Essentials Platelet packing density in a hemostatic plug limits molecular movement to diffusion. A diffusion-dependent steep thrombin gradient forms radiating outwards from the injury site. Clot retraction affects the steepness of the gradient by increasing platelet packing density. Together, these effects promote hemostatic plug core formation and inhibit unnecessary growth. SUMMARY: Background Hemostasis studies performed in vivo have shown that hemostatic plugs formed after penetrating injuries are characterized by a core of highly activated, densely packed platelets near the injury site, covered by a shell of less activated and loosely packed platelets. Thrombin production occurs near the injury site, further activating platelets and starting the process of platelet mass retraction. Tightening of interplatelet gaps may then prevent the escape and exchange of solutes. Objectives To reconstruct the hemostatic plug macro- and micro-architecture and examine how platelet mass contraction regulates solute transport and solute concentration in the gaps between platelets. Methods Our approach consisted of three parts. First, platelet aggregates formed in vitro under flow were analyzed using scanning electron microscopy to extract data on porosity and gap size distribution. Second, a three-dimensional (3-D) model was constructed with features matching the platelet aggregates formed in vitro. Finally, the 3-D model was integrated with volume and morphology measurements of hemostatic plugs formed in vivo to determine how solutes move within the platelet plug microenvironment. Results The results show that the hemostatic mass is characterized by extremely narrow gaps, porosity values even smaller than previously estimated and stagnant plasma velocity. Importantly, the concentration of a chemical species released within the platelet mass increases as the gaps between platelets shrink. Conclusions Platelet mass retraction provides a physical mechanism to establish steep chemical concentration gradients that determine the extent of platelet activation and account for the core-and-shell architecture observed in vivo.


Subject(s)
Abdominal Muscles/blood supply , Arterioles/injuries , Blood Platelets/metabolism , Hemostasis , Platelet Aggregation , Thrombin/metabolism , Thrombosis/blood , Vascular System Injuries/blood , Animals , Arterioles/pathology , Arterioles/physiopathology , Blood Flow Velocity , Blood Platelets/pathology , Clot Retraction , Computer Simulation , Diffusion , Disease Models, Animal , Mice, Inbred C57BL , Microcirculation , Models, Biological , Porosity , Thrombosis/pathology , Thrombosis/physiopathology , Time Factors , Vascular System Injuries/pathology , Vascular System Injuries/physiopathology
4.
J Thromb Haemost ; 15(8): 1655-1667, 2017 08.
Article in English | MEDLINE | ID: mdl-28561434

ABSTRACT

Essentials Platelet microparticles play a major role in pathologies, including hemostasis and thrombosis. Platelet microparticles have been analyzed and classified based on their ultrastructure. The structure and intracellular origin of microparticles depend on the cell-activating stimulus. Thrombin-treated platelets fall apart and form microparticles that contain cellular organelles. SUMMARY: Background Platelet-derived microparticles comprise the major population of circulating blood microparticles that play an important role in hemostasis and thrombosis. Despite numerous studies on the (patho)physiological roles of platelet-derived microparticles, mechanisms of their formation and structural details remain largely unknown. Objectives Here we studied the formation, ultrastructure and composition of platelet-derived microparticles from isolated human platelets, either quiescent or stimulated with one of the following activators: arachidonic acid, ADP, collagen, thrombin or calcium ionophore A23187. Methods Using flow cytometry, transmission and scanning electron microscopy, we analyzed the intracellular origin, structural diversity and size distributions of the subcellular particles released from platelets. Results The structure, dimensions and intracellular origin of microparticles depend on the cell-activating stimulus. The main structural groups include a vesicle surrounded by one thin membrane or multivesicular structures. Thrombin, unlike other stimuli, induced formation of microparticles not only from the platelet plasma membrane and cytoplasm but also from intracellular structures. A fraction of these vesicular particles having an intracellular origin contained organelles, such as mitochondria, glycogen granules and vacuoles. The size of platelet-derived microparticles depended on the nature of the cell-activating stimulus. Conclusion The results obtained provide a structural basis for the qualitative differences of various platelet activators, for specific physiological and pathological effects of microparticles, and for development of advanced assays.


Subject(s)
Blood Platelets/ultrastructure , Cell-Derived Microparticles/ultrastructure , Platelet Activation , Adenosine Diphosphate/pharmacology , Arachidonic Acid/pharmacology , Blood Platelets/drug effects , Blood Platelets/metabolism , Calcimycin/pharmacology , Calcium Ionophores/pharmacology , Cell-Derived Microparticles/drug effects , Cell-Derived Microparticles/metabolism , Collagen/pharmacology , Flow Cytometry , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Platelet Activation/drug effects , Thrombin/pharmacology
5.
Matrix Biol ; 60-61: 141-156, 2017 07.
Article in English | MEDLINE | ID: mdl-27751946

ABSTRACT

Fibrin and collagen as well as their combinations play an important biological role in tissue regeneration and are widely employed in surgery as fleeces or sealants and in bioengineering as tissue scaffolds. Earlier studies demonstrated that fibrin-collagen composite networks displayed improved tensile mechanical properties compared to the isolated protein matrices. Unlike previous studies, here unconfined compression was applied to a fibrin-collagen filamentous polymer composite matrix to study its structural and mechanical responses to compressive deformation. Combining collagen with fibrin resulted in formation of a composite hydrogel exhibiting synergistic mechanical properties compared to the isolated fibrin and collagen matrices. Specifically, the composite matrix revealed a one order of magnitude increase in the shear storage modulus at compressive strains>0.8 in response to compression compared to the mechanical features of individual components. These material enhancements were attributed to the observed structural alterations, such as network density changes, an increase in connectivity along with criss-crossing, and bundling of fibers. In addition, the compressed composite collagen/fibrin networks revealed a non-linear transformation of their viscoelastic properties with softening and stiffening regimes. These transitions were shown to depend on protein concentrations. Namely, a decrease in protein content drastically affected the mechanical response of the networks to compression by shifting the onset of stiffening to higher degrees of compression. Since both natural and artificially composed extracellular matrices experience compression in various (patho)physiological conditions, our results provide new insights into the structural biomechanics of the polymeric composite matrix that can help to create fibrin-collagen sealants, sponges, and tissue scaffolds with tunable and predictable mechanical properties.


Subject(s)
Biomimetic Materials/chemistry , Collagen/chemistry , Fibrin/chemistry , Hydrogels/chemistry , Tissue Scaffolds , Animals , Collagen/ultrastructure , Extracellular Matrix/chemistry , Extracellular Matrix/ultrastructure , Fibrin/ultrastructure , Humans , Materials Testing , Pressure , Rats , Stress, Mechanical , Tensile Strength , Tissue Engineering
6.
Res Pract Thromb Haemost ; 1(2): 231-241, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29713693

ABSTRACT

BACKGROUND: Factor VIII (FVIII) replacement is standard of care for patients with hemophilia A (HemA); however, patient response does not always correlate with FVIII levels. We hypothesize this may be in part due to the physical properties of clots and contributions of fibrin, platelets, and erythrocytes, which may be important for hemostasis. OBJECTIVE: To understand how FVIII contributes to effective hemostasis in terms of clot structure and mechanical properties. PATIENTS/METHODS: In vitro HemA clots in human plasma or whole blood were analyzed using turbidity waveform analysis, confocal microscopy, and rheometry with or without added FVIII. In vivo clots from saphenous vein puncture in wild-type and HemA mice with varying FVIII levels were examined using scanning electron microscopy. RESULTS: FVIII profoundly affected HemA clot structure and physical properties; added FVIII converted the open and porous fibrin meshwork and low stiffness of HemA clots to a highly branched and dense meshwork with higher stiffness. Platelets and erythrocytes incorporated into clots modulated clot properties. The clots formed in the mouse saphenous vein model contained variable amounts of compressed erythrocytes (polyhedrocytes), fibrin, and platelets depending on the levels of FVIII, correlating with bleeding times. FVIII effects on clot characteristics were dose-dependent and reached a maximum at ~25% FVIII, such that HemA clots formed with this level of FVIII resembled clots from unaffected controls. CONCLUSIONS: Effective clot formation can be achieved in HemA by replacement therapy, which alters the architecture of the fibrin network and associated cells, thus increasing clot stiffness and decreasing clot permeability.

7.
Phlebology ; 31(3): 177-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25694419

ABSTRACT

OBJECTIVES: To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. METHODS: Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. RESULTS: Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. CONCLUSION: Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific.


Subject(s)
Blood Cells/pathology , Detergents/pharmacology , Endothelial Cells/pathology , Fibroblasts/pathology , Sclerosing Solutions/pharmacology , Sodium Tetradecyl Sulfate/pharmacology , Blood Cells/metabolism , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Humans , Male
9.
J Thromb Haemost ; 13(4): 601-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25619618

ABSTRACT

BACKGROUND: Ultrasound accelerates tissue-type plasminogen activator (t-PA)-induced fibrinolysis of clots in vitro and in vivo. OBJECTIVE: To identify mechanisms for the enhancement of t-PA-induced fibrinolysis of clots. METHODS: Turbidity is an accurate and convenient method, not previously used, to follow the effects of ultrasound. Deconvolution microscopy was used to determine changes in structure, while fluorescence recovery after photobleaching was used to characterize the kinetics of binding/unbinding and transport. RESULTS: The ultrasound pulse repetition frequency affected clot lysis times, but there were no thermal effects. Ultrasound in the absence of t-PA produced a slight but consistent decrease in turbidity, suggesting a decrease in fibrin diameter due solely to the action of the ultrasound, likely caused by an increase in protofibril tension because of vibration from ultrasound. Changes in fibrin network structure during lysis with ultrasound were visualized in real time by deconvolution microscopy, revealing that the network becomes unstable when 30-40% of the protein in the network was digested, whereas without ultrasound, the fibrin network was digested gradually and retained structural integrity. Fluorescence recovery after photobleaching during lysis revealed that the off-rate of oligomers from digesting fibers was little affected, but the number of binding/unbinding sites was increased. CONCLUSIONS: Ultrasound causes a decrease in the diameter of the fibers due to tension as a result of vibration, leading to increased binding sites for plasmin(ogen)/t-PA. The positive feedback of this structural change together with increased mixing/transport of t-PA/plasmin(ogen) is likely to account for the observed enhancement of fibrinolysis by ultrasound.


Subject(s)
Fibrin/metabolism , Fibrinolysis/drug effects , Fibrinolytic Agents/pharmacology , Tissue Plasminogen Activator/pharmacology , Ultrasonics , Binding Sites , Fibrin/ultrastructure , Fibrinolytic Agents/metabolism , Fluorescence Recovery After Photobleaching , Humans , Kinetics , Microscopy , Nephelometry and Turbidimetry , Protein Binding , Protein Conformation , Protein Stability , Proteolysis , Temperature , Tissue Plasminogen Activator/metabolism , Vibration
10.
Clin Hemorheol Microcirc ; 60(4): 451-64, 2015.
Article in English | MEDLINE | ID: mdl-25624413

ABSTRACT

Incipient clot formation in whole blood and fibrin gels was studied by the rheometric techniques of controlled stress parallel superposition (CSPS) and small amplitude oscillatory shear (SAOS). The effects of unidirectional shear stress on incipient clot microstructure, formation kinetics and elasticity are reported in terms of the fractal dimension (df) of the fibrin network, the gel network formation time (TGP) and the shear elastic modulus, respectively. The results of this first haemorheological application of CSPS reveal the marked sensitivity of incipient clot microstructure to physiologically relevant levels of shear stress, these being an order of magnitude lower than have previously been studied by SAOS. CSPS tests revealed that exposure of forming clots to increasing levels of shear stress produces a corresponding elevation in df, consistent with the formation of tighter, more compact clot microstructures under unidirectional flow. A corresponding increase in shear elasticity was recorded. The scaling relationship established between shear elasticity and df for fibrin clots and whole blood confirms the fibrin network as the dominant microstructural component of the incipient clot in terms of its response to imposed stress. Supplementary studies of fibrin clot formation by rheometry and microscopy revealed the substantial additional network mass required to increase df and provide evidence to support the hypothesis that microstructural changes in blood clotted under unidirectional shear may be attributed to flow enhanced thrombin generation and activation. CSPS also identified a threshold value of unidirectional shear stress above which no incipient clot formation could be detected. CSPS was shown to be a valuable haemorheological tool for the study of the effects of physiological and pathological levels of shear on clot properties.


Subject(s)
Blood Coagulation/drug effects , Stress, Mechanical , Fractals , Gels
15.
J Thromb Haemost ; 8(5): 1066-74, 2010 May.
Article in English | MEDLINE | ID: mdl-20149071

ABSTRACT

SUMMARY BACKGROUND: Coupling fibrinolytic plasminogen activators to red blood cells (RBCs) has been proposed as an effective, yet safe method of thromboprophylaxis, because of increased circulation lifetime and reduced propensity to induce hemorrhage by selectivity for nascent thrombi rather than pre-formed hemostatic clots. OBJECTIVES AND METHODS: We used confocal microscopy of fluorescently labeled fibrin and erythrocytes in plasma-derived clots to study the spatial dynamics of lysis catalyzed by RBC-coupled vs. free plasminogen activators (RBC-PA vs. PA). RESULTS: Clot lysis catalyzed by free PA progressed gradually and uniformly. In contrast, distinct holes formed surrounding RBC-PA while the rest of the clot remained intact until these holes enlarged sufficiently to merge, causing sudden clot dissolution. Compared with naïve RBCs within clots lysed by free PA, RBC-PA moved faster inside the fibrin network prior to clot dissolution, providing a potential mechanism for spatial propagation of RBC-PA induced lysis. We also showed the focal nature of fibrinolysis by RBC-PA as dense loading of PA onto RBCs initiates more efficient lysis than equal amounts of PA spread sparsely over more RBCs. In an in vitro model of clots exposed to buffer flow, incorporated RBC-PA increased permeability and formed channels eventually triggering clot dissolution, whereas clots containing free PA remained intact. CONCLUSIONS: Clot lysis by RBC-PA begins focally, has a longer lag phase when measured by residual mass than homogeneous lysis by PA, is propagated by RBC-PA motility and provides more effective clot reperfusion than free PA, making RBC-PA attractive for short-term thromboprophylaxis.


Subject(s)
Erythrocytes/drug effects , Fibrin , Fibrinolytic Agents/pharmacology , Animals , Biocatalysis , Humans , Mice , Microscopy, Confocal , Solubility
16.
J Thromb Haemost ; 8(5): 1027-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20149079

ABSTRACT

See also Liu W, Carlisle CR, Sparks EA, Guthold M. The mechanical properties of single fibrin fibers. This issue, pp 1030-6; Carlisle CR, Sparks EA, Der Loughian C, Guthold M. Strength and failure of fibrin fiber branchpoints. This issue, pp 1135-8.


Subject(s)
Hemostasis , Thrombosis/physiopathology , Biomechanical Phenomena , Humans
17.
Arterioscler Thromb Vasc Biol ; 29(5): 712-7, 2009 May.
Article in English | MEDLINE | ID: mdl-19286636

ABSTRACT

OBJECTIVES: The purpose of this study was to investigate the direct effects of aspirin on fibrin structure/function. METHODS AND RESULTS: Chinese Hamster Ovary cell lines stably transfected with fibrinogen were grown in the absence (0) and presence of increasing concentrations of aspirin. Fibrinogen was purified from the media using affinity chromatography, and clots were made from recombinant protein. Mean final turbidity [OD(+/-SEM)] was 0.083(+/-0.03), 0.093(+/-0.002), 0.101(+/-0.005), and 0.125(+/-0.003) in clots made from 0, 1, 10, and 100 mg/L aspirin-treated fibrinogen, respectively (P<0.05). Permeability coefficient (Ks cm2 x 10(-8)) was 1.68(+/-0.29) and 4.13(+/-0.33) comparing fibrinogen produced from cells grown with 0 mg/L and 100 mg/L aspirin respectively (P<0.05). Scanning electron microscopy confirmed a looser clot structure and increased fiber thickness of clots made from aspirin-treated fibrinogen, whereas rheometer studies showed a significant 30% reduction in clot rigidity. Fibrinolysis was quicker in clots made from aspirin-treated fibrinogen. Ex vivo studies in 3 normal volunteers given 150 mg aspirin daily for 1 week demonstrated similar changes in clot structure/function. CONCLUSION: Aspirin directly altered clot structure resulting in the formation of clots with thicker fibers and bigger pores, which are easier to lyse. This study clearly demonstrates an alternative mode of action for aspirin, which should be considered in studies evaluating the biochemical efficacy of this agent.


Subject(s)
Aspirin/pharmacology , Blood Coagulation/drug effects , Fibrinogen/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Fibrinolysis/drug effects
19.
Cardiovasc Hematol Agents Med Chem ; 6(3): 161-80, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18673231

ABSTRACT

The effectiveness of fibrinolysis results from the combination of regulated enzymatic activity and the physical properties of the fibrin scaffold. Physiologically, clots or thrombi are dissolved from within via internal lysis. In contrast, with therapeutic thrombolysis, lytic agents are introduced at one surface and lysis proceeds across the thrombus. In the latter case, there are complex changes that take place at the lysis front in a narrow zone. However, at the microscopic level the mechanisms for either general type of fibrinolysis appear to be similar. Fibrinolysis proceeds by fibers being transected laterally, rather than digestion of fibers by surface erosion from the outside. A molecular model to account for these observations together with what is known from the biochemical characterization of fibrinolysis involves the movement of plasmin laterally across fibers, binding to sites created by its own proteolytic activity. Fibrin clots can have a great diversity of structural, biological, physical, and chemical properties depending on the conditions of formation, and the rate and nature of fibrinolysis is related to these properties. In general, the rate of lysis appears to be faster for clots made up of thicker fibers than for clots made up of thinner fibers, but the lysis rate is not simply a function of fiber diameter and also depends on other physical properties of the clot. Platelet aggregation and clot retraction have a dramatic effect on the structure of fibrin and hence on fibrinolysis.


Subject(s)
Fibrinolysis/physiology , Fibrinolytic Agents/pharmacology , Tissue Plasminogen Activator/physiology , Fibrin/physiology , Humans , Plasminogen/physiology , Thrombosis/metabolism , Tissue Plasminogen Activator/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...