Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Sci Signal ; 17(822): eadh0439, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319998

ABSTRACT

Naive T cells experience tonic T cell receptor (TCR) signaling in response to self-antigens presented by major histocompatibility complex (MHC) in secondary lymphoid organs. We investigated how relatively weak or strong tonic TCR signals influence naive CD8+ T cell responses to stimulation with foreign antigens. The heterogeneous expression of Nur77-GFP, a transgenic reporter of tonic TCR signaling, in naive CD8+ T cells suggests variable intensities or durations of tonic TCR signaling. Although the expression of genes associated with acutely stimulated T cells was increased in Nur77-GFPHI cells, these cells were hyporesponsive to agonist TCR stimulation compared with Nur77-GFPLO cells. This hyporesponsiveness manifested as diminished activation marker expression and decreased secretion of IFN-γ and IL-2. The protein abundance of the ubiquitin ligase Cbl-b, a negative regulator of TCR signaling, was greater in Nur77-GFPHI cells than in Nur77-GFPLO cells, and Cbl-b deficiency partially restored the responsiveness of Nur77-GFPHI cells. Our data suggest that the cumulative effects of previously experienced tonic TCR signaling recalibrate naive CD8+ T cell responsiveness. These changes include gene expression changes and negative regulation partially dependent on Cbl-b. This cell-intrinsic negative feedback loop may enable the immune system to restrain naive CD8+ T cells with higher self-reactivity.


Subject(s)
CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Mice , Animals , Mice, Transgenic , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Mice, Inbred C57BL
2.
Immunity ; 56(12): 2682-2698.e9, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091950

ABSTRACT

T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.


Subject(s)
Signal Transduction , T-Lymphocytes , Ubiquitin-Protein Ligases/metabolism , Receptors, Antigen, T-Cell/metabolism , Phosphoric Monoester Hydrolases/metabolism , Hydrogen-Ion Concentration
3.
Annu Rev Immunol ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37788477

ABSTRACT

I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation. Expected final online publication date for the Annual Review of Immunology, Volume 42 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

4.
Proc Natl Acad Sci U S A ; 120(25): e2300987120, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37307442

ABSTRACT

T cell antigen receptor stimulation induces tyrosine phosphorylation of downstream signaling molecules and the phosphatidylinositol, Ras, MAPK, and PI3 kinase pathways, leading to T cell activation. Previously, we reported that the G-protein-coupled human muscarinic receptor could bypass tyrosine kinases to activate the phosphatidylinositol pathway and induce interleukin-2 production in Jurkat leukemic T cells. Here, we demonstrate that stimulating G-protein-coupled muscarinic receptors (M1 and synthetic hM3Dq) can activate primary mouse T cells if PLCß1 is coexpressed. Resting peripheral hM3Dq+PLCß1 (hM3Dq/ß1) T cells did not respond to clozapine, an hM3Dq agonist, unless they were preactivated by TCR and CD28 stimulation which increased hM3Dq and PLCß1 expression. This permitted large calcium and phosphorylated ERK responses to clozapine. Clozapine treatment induced high IFN-γ, CD69, and CD25 expression, but surprisingly did not induce substantial IL-2 in hM3Dq/ß1 T cells. Importantly, costimulation of both muscarinic receptors plus the TCR even led to reduced IL-2 expression, suggesting a selective inhibitory effect of muscarinic receptor costimulation. Stimulation of muscarinic receptors induced strong nuclear translocation of NFAT and NFκB and activated AP-1. However, stimulation of hM3Dq led to reduced IL-2 mRNA stability which correlated with an effect on the IL-2 3'UTR activity. Interestingly, stimulation of hM3Dq resulted in reduced pAKT and its downstream pathway. This may explain the inhibitory impact on IL-2 production in hM3Dq/ß1T cells. Moreover, an inhibitor of PI3K reduced IL-2 production in TCR-stimulated hM3Dq/ß1 CD4 T cells, suggesting that activating the pAKT pathway is critical for IL-2 production in T cells.


Subject(s)
Clozapine , Interleukin-2 , Humans , Animals , Mice , Receptors, Muscarinic , Interferon-gamma , GTP-Binding Proteins , Tyrosine
5.
Trends Immunol ; 44(4): 248-255, 2023 04.
Article in English | MEDLINE | ID: mdl-36907684

ABSTRACT

Some of the current and former organizers of the Cold Spring Harbor Laboratory (CSHL) 'Gene Expression and Signaling in the Immune System' (GESIS) meeting offer opinions on emerging questions in immunology, discussing the strong value of this recurring scientific meeting in the field.


Subject(s)
Immune System , Signal Transduction , Humans
6.
Nat Immunol ; 24(4): 676-689, 2023 04.
Article in English | MEDLINE | ID: mdl-36914891

ABSTRACT

Mature T cells must discriminate between brief interactions with self-peptides and prolonged binding to agonists. The kinetic proofreading model posits that certain T-cell antigen receptor signaling nodes serve as molecular timers to facilitate such discrimination. However, the physiological significance of this regulatory mechanism and the pathological consequences of disrupting it are unknown. Here we report that accelerating the normally slow phosphorylation of the linker for activation of T cells (LAT) residue Y136 by introducing an adjacent Gly135Asp alteration (LATG135D) disrupts ligand discrimination in vivo. The enhanced self-reactivity of LATG135D T cells triggers excessive thymic negative selection and promotes T-cell anergy. During Listeria infection, LATG135D T cells expand more than wild-type counterparts in response to very weak stimuli but display an imbalance between effector and memory responses. Moreover, despite their enhanced engagement of central and peripheral tolerance mechanisms, mice bearing LATG135D show features associated with autoimmunity and immunopathology. Our data reveal the importance of kinetic proofreading in balancing tolerance and immunity.


Subject(s)
Adaptor Proteins, Signal Transducing , T-Lymphocytes , Mice , Animals , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Receptors, Antigen, T-Cell/metabolism , Lymphocyte Activation , Phosphorylation , Phosphoproteins/genetics
7.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747815

ABSTRACT

The cumulative effects of T cell receptor (TCR) signal transduction over extended periods of time influences T cell biology, such as the positive selection of immature thymocytes or the proliferative responses of naive T cells. Naive T cells experience recurrent TCR signaling in response to self-antigens in the steady state. However, how these signals influence the responsiveness of naive CD8+ T cells to subsequent agonist TCR stimulation remains incompletely understood. We investigated how naive CD8+ T cells that experienced relatively low or high levels of TCR signaling in response to self-antigens respond to stimulation with foreign antigens. A transcriptional reporter of Nr4a1 (Nur77-GFP) revealed substantial heterogeneity of the amount of TCR signaling naive CD8+ T cells accumulate in the steady state. Nur77-GFPHI cells exhibited diminished T cell activation and secretion of IFNγ and IL-2 relative to Nur77-GFPLO cells in response to agonist TCR stimulation. Differential gene expression analyses revealed upregulation of genes associated with acutely stimulated T cells in Nur77-GFPHI cells but also increased expression of negative regulators such as the phosphatase Sts1. Responsiveness of Nur77-GFPHI cells to TCR stimulation was partially restored at the level of IFNγ secretion by deficiency of Sts1 or the ubiquitin ligase Cbl-b. Our data suggest that extensive accumulation of TCR signaling during steady state conditions induces a recalibration of the responsiveness of naive CD8+ T cells through gene expression changes and negative regulation, at least in part, dependent on Sts1 and Cbl-b. This cell-intrinsic negative feedback loop may allow the immune system to limit the autoreactive potential of highly self-reactive naive CD8+ T cells.

8.
Nat Immunol ; 24(1): 174-185, 2023 01.
Article in English | MEDLINE | ID: mdl-36564464

ABSTRACT

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , T-Lymphocytes, Cytotoxic , Mice , Animals , T-Lymphocytes, Cytotoxic/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , CD4 Antigens , Signal Transduction , Receptors, Antigen, T-Cell/metabolism , CD8 Antigens/metabolism
9.
Nat Immunol ; 24(1): 136-147, 2023 01.
Article in English | MEDLINE | ID: mdl-36581712

ABSTRACT

Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phospholipase C-γ (PLCγ1) represents a critical step in T cell antigen receptor (TCR) signaling and subsequent thymocyte and T cell responses. PIP2 replenishment following its depletion in the plasma membrane (PM) is dependent on delivery of its precursor phosphatidylinositol (PI) from the endoplasmic reticulum (ER) to the PM. We show that a PI transfer protein (PITP), Nir3 (Pitpnm2), promotes PIP2 replenishment following TCR stimulation and is important for T cell development. In Nir3-/- T lineage cells, the PIP2 replenishment following TCR stimulation is slower. Nir3 deficiency attenuates calcium mobilization in double-positive (DP) thymocytes in response to weak TCR stimulation. This impaired TCR signaling leads to attenuated thymocyte development at TCRß selection and positive selection as well as diminished mature T cell fitness in Nir3-/- mice. This study highlights the importance of PIP2 replenishment mediated by PITPs at ER-PM junctions during TCR signaling.


Subject(s)
Phospholipid Transfer Proteins , Signal Transduction , Mice , Animals , Phospholipid Transfer Proteins/metabolism , Cell Membrane/metabolism , Receptors, Antigen, T-Cell/metabolism , Phosphatidylinositols/metabolism
10.
Immunol Rev ; 307(1): 145-160, 2022 05.
Article in English | MEDLINE | ID: mdl-34923645

ABSTRACT

Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self- from agonist-peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self-reactive TCRs a greater chance to escape negative selection. Such 'forbidden clones' may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self-ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.


Subject(s)
Autoimmune Diseases , Autoimmunity , Protein-Tyrosine Kinases/metabolism , Animals , Humans , Immune Tolerance , Mice , Receptors, Antigen, T-Cell/metabolism , Thymocytes , Thymus Gland
11.
Elife ; 102021 11 25.
Article in English | MEDLINE | ID: mdl-34821217

ABSTRACT

The positive transcription elongation factor b (P-TEFb) is a critical coactivator for transcription of most cellular and viral genes, including those of HIV. While P-TEFb is regulated by 7SK snRNA in proliferating cells, P-TEFb is absent due to diminished levels of CycT1 in quiescent and terminally differentiated cells, which has remained unexplored. In these cells, we found that CycT1 not bound to CDK9 is rapidly degraded. Moreover, productive CycT1:CDK9 interactions are increased by PKC-mediated phosphorylation of CycT1 in human cells. Conversely, dephosphorylation of CycT1 by PP1 reverses this process. Thus, PKC inhibitors or removal of PKC by chronic activation results in P-TEFb disassembly and CycT1 degradation. This finding not only recapitulates P-TEFb depletion in resting CD4+ T cells but also in anergic T cells. Importantly, our studies reveal mechanisms of P-TEFb inactivation underlying T cell quiescence, anergy, and exhaustion as well as proviral latency and terminally differentiated cells.


Subject(s)
Cyclin T/metabolism , Cyclin-Dependent Kinase 9/metabolism , Phosphorylation , Positive Transcriptional Elongation Factor B/metabolism , HEK293 Cells , Humans , Jurkat Cells , Positive Transcriptional Elongation Factor B/chemistry , T-Lymphocytes
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34675079

ABSTRACT

T cell antigen receptor (TCR) and B cell antigen receptor (BCR) signaling are initiated and tightly regulated by Src-family kinases (SFKs). SFKs positively regulate TCR signaling in naïve T cells but have both positive and negative regulatory roles in BCR signaling in naïve B cells. The proper regulation of their activities depends on the opposing actions of receptor tyrosine phosphatases CD45 and CD148 and the cytoplasmic tyrosine kinase C-terminal Src kinase Csk. Csk is a major negative regulator of SFKs. Using a PP1-analog-sensitive Csk (CskAS) system, we have previously shown that inhibition of CskAS increases SFK activity, leading to augmentation of responses to weak TCR stimuli in T cells. However, the effects of Csk inhibition in B cells were not known. In this study, we surprisingly found that inhibition of CskAS led to marked inhibition of BCR-stimulated cytoplasmic free calcium increase and Erk activation despite increased SFK activation in B cells, contrasting the effects observed in T cells. Further investigation revealed that acute CskAS inhibition suppressed BCR-mediated phosphatidylinositol 3,4,5-trisphosphate (PIP3) production in B cells. Restoring PIP3 levels in B cells by CD19 cross-linking or SHIP1 deficiency eliminated the negative regulatory effect of CskAS inhibition. This reveals the critical role of Csk in maintaining an appropriate level of SFK activity and regulating PIP3 amounts as a means of compensating for SFK fluctuations to prevent inappropriate B cell activation. This regulatory mechanism controlling PIP3 amounts may also contribute to B cell anergy and self-tolerance.


Subject(s)
B-Lymphocytes/immunology , CSK Tyrosine-Protein Kinase/antagonists & inhibitors , Lymphocyte Activation , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
13.
Front Immunol ; 12: 673196, 2021.
Article in English | MEDLINE | ID: mdl-33936119

ABSTRACT

Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αß T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αß T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Receptors, Antigen, T-Cell/immunology , Self Tolerance/immunology , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
14.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33974042

ABSTRACT

T cell anergy is an important peripheral tolerance mechanism. We studied how T cell anergy is established using an anergy model in which the Zap70 hypermorphic mutant W131A is coexpressed with the OTII TCR transgene (W131AOTII). Anergy was established in the periphery, not in the thymus. Contrary to enriched tolerance gene signatures and impaired TCR signaling in mature peripheral CD4 T cells, CD4SP thymocytes exhibited normal TCR signaling in W131AOTII mice. Importantly, the maintenance of T cell anergy in W131AOTII mice required antigen presentation via MHC-II. We investigated the functional importance of the inhibitory receptor PD-1 and the E3 ubiquitin ligases Cbl-b and Grail in this model. Deletion of each did not affect expression of phenotypic markers of anergic T cells or T reg numbers. However, deletion of Cbl-b, but not Grail or PD-1, in W131AOTII mice restored T cell responsiveness and signaling. Thus, Cbl-b plays an essential role in the establishment and/or maintenance of unresponsiveness in T cell anergy.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , CD4-Positive T-Lymphocytes/immunology , Proto-Oncogene Proteins c-cbl/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Clonal Anergy/immunology , Immune Tolerance/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Transgenic , Peripheral Tolerance/immunology , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Ubiquitin-Protein Ligases/immunology , ZAP-70 Protein-Tyrosine Kinase/immunology
15.
J Immunol ; 206(10): 2322-2337, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33931484

ABSTRACT

The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , CD28 Antigens/metabolism , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Dimerization , Genetic Vectors , Humans , Interleukin-2/metabolism , Jurkat Cells , Mice , Mice, Inbred BALB C , Phosphoproteins/genetics , Phosphorylation/genetics , Protein Binding , Transfection
16.
Sci Signal ; 14(668)2021 02 02.
Article in English | MEDLINE | ID: mdl-33531381

ABSTRACT

The cytoplasmic kinase ZAP70 is critical for T cell antigen receptor (TCR) signaling. The R360P mutation in ZAP70 is responsible for an early-onset familial autoimmune syndrome. The structural location and biochemical signaling effects of the R360P mutation are consistent with weakening of the autoinhibitory conformation of ZAP70. Mice with a ZAP70 R360P mutation and polyclonal TCR repertoires exhibited relatively normal T cell development but showed evidence of increased signaling. In addition, the R360P mutation resulted in enhanced follicular helper T cell expansion after LCMV infection. To eliminate the possibility of a TCR repertoire shift, the OTI transgenic TCR was introduced into R360P mice, which resulted in enhanced T cell responses to weaker stimuli, including weak agonists and a self-peptide. These observations suggest that disruption of ZAP70 autoinhibition by the R360P mutation enables increased mature T cell sensitivity to self-antigens that would normally be ignored by wild-type T cells, a mechanism that may contribute to the break of tolerance in human patients with R360P mutation.


Subject(s)
Autoimmune Diseases/immunology , CD8-Positive T-Lymphocytes/immunology , Receptors, Antigen, T-Cell/immunology , ZAP-70 Protein-Tyrosine Kinase/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , HEK293 Cells , Humans , Immune Tolerance , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation
17.
Proc Natl Acad Sci U S A ; 117(42): 26020-26030, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33020303

ABSTRACT

T cells exhibit remarkable sensitivity and selectivity in detecting and responding to agonist peptides (p) bound to MHC molecules in a sea of self pMHC molecules. Despite much work, understanding of the underlying mechanisms of distinguishing such ligands remains incomplete. Here, we quantify T cell discriminatory capacity using channel capacity, a direct measure of the signaling network's ability to discriminate between antigen-presenting cells (APCs) displaying either self ligands or a mixture of self and agonist ligands. This metric shows how differences in information content between these two types of peptidomes are decoded by the topology and rates of kinetic proofreading signaling steps inside T cells. Using channel capacity, we constructed numerically substantiated hypotheses to explain the discriminatory role of a recently identified slow LAT Y132 phosphorylation step. Our results revealed that in addition to the number and kinetics of sequential signaling steps, a key determinant of discriminatory capability is spatial localization of a minimum number of these steps to the engaged TCR. Biochemical and imaging experiments support these findings. Our results also reveal the discriminatory role of early negative feedback and necessary amplification conferred by late positive feedback.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Antigen-Presenting Cells/immunology , Lymphocyte Activation/immunology , Major Histocompatibility Complex/immunology , Membrane Proteins/metabolism , Peptide Fragments/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Humans , Jurkat Cells , Kinetics , Ligands , Models, Theoretical , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
18.
Sci Signal ; 12(604)2019 10 22.
Article in English | MEDLINE | ID: mdl-31641081

ABSTRACT

T cells require the protein tyrosine phosphatase CD45 to detect and respond to antigen because it activates the Src family kinase Lck, which phosphorylates the T cell antigen receptor (TCR) complex. CD45 activates Lck by opposing the negative regulatory kinase Csk. Paradoxically, CD45 has also been implicated in suppressing TCR signaling by dephosphorylating the same signaling motifs within the TCR complex upon which Lck acts. We sought to reconcile these observations using chemical and genetic perturbations of the Csk/CD45 regulatory axis incorporated with computational analyses. Specifically, we titrated the activities of Csk and CD45 and assessed their influence on Lck activation, TCR-associated ζ-chain phosphorylation, and more downstream signaling events. Acute inhibition of Csk revealed that CD45 suppressed ζ-chain phosphorylation and was necessary for a regulatable pool of active Lck, thereby interconnecting the activating and suppressive roles of CD45 that tune antigen discrimination. CD45 suppressed signaling events that were antigen independent or induced by low-affinity antigen but not those initiated by high-affinity antigen. Together, our findings reveal that CD45 acts as a signaling "gatekeeper," enabling graded signaling outputs while filtering weak or spurious signaling events.


Subject(s)
Leukocyte Common Antigens/immunology , Signal Transduction/immunology , T-Lymphocytes/immunology , Animals , CSK Tyrosine-Protein Kinase/genetics , Humans , Jurkat Cells , Leukocyte Common Antigens/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Signal Transduction/genetics , T-Lymphocytes/cytology
19.
Nat Immunol ; 20(11): 1481-1493, 2019 11.
Article in English | MEDLINE | ID: mdl-31611699

ABSTRACT

Self-non-self discrimination is central to T cell-mediated immunity. The kinetic proofreading model can explain T cell antigen receptor (TCR) ligand discrimination; however, the rate-limiting steps have not been identified. Here, we show that tyrosine phosphorylation of the T cell adapter protein LAT at position Y132 is a critical kinetic bottleneck for ligand discrimination. LAT phosphorylation at Y132, mediated by the kinase ZAP-70, leads to the recruitment and activation of phospholipase C-γ1 (PLC-γ1), an important effector molecule for T cell activation. The slow phosphorylation of Y132, relative to other phosphosites on LAT, is governed by a preceding glycine residue (G131) but can be accelerated by substituting this glycine with aspartate or glutamate. Acceleration of Y132 phosphorylation increases the speed and magnitude of PLC-γ1 activation and enhances T cell sensitivity to weaker stimuli, including weak agonists and self-peptides. These observations suggest that the slow phosphorylation of Y132 acts as a proofreading step to facilitate T cell ligand discrimination.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Activation , Membrane Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/immunology , Animals , Female , Ligands , Male , Membrane Proteins/immunology , Mice , Phospholipase C gamma/metabolism , Phosphorylation/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/metabolism , Tyrosine/metabolism , ZAP-70 Protein-Tyrosine Kinase/metabolism
20.
Proc Natl Acad Sci U S A ; 116(37): 18517-18527, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31455730

ABSTRACT

How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77-a marker of T cell antigen receptor (TCR) signaling-to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)-producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)-a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/immunology , Synovial Membrane/immunology , Th17 Cells/immunology , Adult , Aged , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/surgery , Biopsy , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Down-Regulation , Female , Genes, Reporter/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Humans , Interleukin-17/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Male , Mice , Mice, Transgenic , Middle Aged , Nuclear Receptor Subfamily 4, Group A, Member 1/chemistry , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology , Suppressor of Cytokine Signaling 3 Protein/immunology , Suppressor of Cytokine Signaling 3 Protein/metabolism , Synovectomy , Synovial Membrane/cytology , Synovial Membrane/metabolism , Synovial Membrane/pathology , Th17 Cells/metabolism , Zymosan/administration & dosage , Zymosan/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...