ABSTRACT
Members of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for 20 cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions-along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for the regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.
Subject(s)
Chromatin/metabolism , Epigenome , GATA Transcription Factors/metabolism , Gene Expression Regulation , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Cell Differentiation , Chromatin/genetics , GATA Transcription Factors/genetics , HumansABSTRACT
Platelet dense granules (DGs) are storage organelles for calcium ions, small organic molecules such as ADP and serotonin, and larger polyphosphates that are secreted upon platelet stimulation to enhance platelet activation, adhesion, and stabilization at sites of vascular damage. DGs are thought to fully mature within megakaryocytes (MKs) prior to platelet formation. Here we challenge this notion by exploiting vital fluorescent dyes to distinguish mildly acidic DGs from highly acidic compartments by microscopy in platelets and MKs. In isolated primary mouse platelets, compartments labeled by mepacrine - a fluorescent weak base that accumulates in DGs - are readily distinguishable from highly acidic compartments, likely lysosomes, that are labeled by the acidic pH indicator, LysoTracker, and from endolysosomes and alpha granules labeled by internalized and partially digested DQ™ BSA. By contrast, in murine fetal liver- and human CD34+ cell-derived MKs and the megakaryocytoid cell lines, MEG-01 and differentiated G1ME2, labeling by mepacrine overlapped nearly completely with labeling by LysoTracker and partially with labeling by DQ™ BSA. Mepacrine labeling in G1ME2-derived MKs was fully sensitive to proton ATPase inhibitors, but was only partially sensitive in platelets. These data indicate that mepacrine in MKs accumulates as a weak base in endolysosomes but is likely pumped into or retained in separate DGs in platelets. Fluorescent puncta that labeled uniquely for mepacrine were first evident in G1ME2-derived proplatelets, suggesting that DGs undergo a maturation step that initiates in the final stages of MK differentiation.