Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Nat Commun ; 14(1): 4271, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460553

ABSTRACT

Multiple myeloma bone disease is characterized by the development of osteolytic bone lesions. Recent work identified matrix metalloproteinase 13 as a myeloma-derived fusogen that induces osteoclast activation independent of its proteolytic activity. We now identify programmed death-1 homolog, PD-1H, as the bona fide MMP-13 receptor on osteoclasts. Silencing PD-1H or using Pd-1h-/- bone marrow cells abrogates the MMP-13-enhanced osteoclast fusion and bone-resorptive activity. Further, PD-1H interacts with the actin cytoskeleton and plays a necessary role in supporting c-Src activation and sealing zone formation. The critical role of PD-1H in myeloma lytic bone lesions was confirmed using a Pd-1h-/- myeloma bone disease mouse model wherein myeloma cells injected into Pd-1h-/-Rag2-/- results in attenuated bone destruction. Our findings identify a role of PD-1H in bone biology independent of its known immunoregulatory functions and suggest that targeting the MMP-13/PD-1H axis may represent a potential approach for the treatment of myeloma associated osteolysis.


Subject(s)
Multiple Myeloma , Osteolysis , Animals , Mice , Bone and Bones/pathology , Carrier Proteins , Matrix Metalloproteinase 13 , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Osteoclasts/pathology , Osteolysis/genetics , Osteolysis/pathology
2.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36880731

ABSTRACT

Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the ß-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.


Subject(s)
Bone Resorption , Galectin 3 , Low Density Lipoprotein Receptor-Related Protein-1 , Osteoclasts , Animals , Humans , Mice , Bone Resorption/genetics , Galectin 3/genetics , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Matrix Metalloproteinase 14 , Matrix Metalloproteinase 9
3.
EMBO J ; 42(7): e111148, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36843552

ABSTRACT

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Subject(s)
Bone Resorption , Osteoclasts , Mice , Animals , Humans , Osteoclasts/metabolism , Creatine Kinase, Mitochondrial Form/metabolism , Bone Resorption/genetics , Bone Resorption/metabolism , Bone and Bones , Cell Differentiation , Zinc Finger E-box-Binding Homeobox 1/genetics , Zinc Finger E-box-Binding Homeobox 1/metabolism
4.
Sci Adv ; 8(51): eabq6152, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542719

ABSTRACT

Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.


Subject(s)
Discoidin Domain Receptor 2 , Mice , Animals , Discoidin Domain Receptor 2/genetics , Proteomics , Cell Differentiation/genetics , Extracellular Matrix/metabolism , Signal Transduction/physiology
5.
Nat Commun ; 13(1): 6409, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302921

ABSTRACT

Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.


Subject(s)
Extracellular Matrix , Neoplasms , Humans , Mice , Animals , Basement Membrane/metabolism , Extracellular Matrix/metabolism , Macrophages , Matrix Metalloproteinases/metabolism , Neoplasms/metabolism
6.
FASEB J ; 36(7): e22401, 2022 07.
Article in English | MEDLINE | ID: mdl-35726676

ABSTRACT

During skeletal myogenesis, the zinc-finger transcription factors SNAI1 and SNAI2, are expressed in proliferating myoblasts and regulate the transition to terminally differentiated myotubes while repressing pro-differentiation genes. Here, we demonstrate that SNAI1 is upregulated in vivo during the early phase of muscle regeneration induced by bupivacaine injury. Using shRNA-mediated gene silencing in C2C12 myoblasts and whole-transcriptome microarray analysis, we identified a collection of genes belonging to the endoplasmic reticulum (ER) stress pathway whose expression, induced by myogenic differentiation, was upregulated in absence of SNAI1. Among these, key ER stress genes, such as Atf3, Ddit3/Chop, Hspa5/Bip, and Fgf21, a myokine involved in muscle differentiation, were strongly upregulated. Furthermore, by promoter mutant analysis and Chromatin immune precipitation assay, we demonstrated that SNAI1 represses Fgf21 and Atf3 in proliferating myoblasts by directly binding to multiple E boxes in their respective promoter regions. Together, these data describe a new regulatory mechanism of myogenic differentiation involving the direct repressive action of SNAI1 on ER stress and Fgf21 expression, ultimately contributing to maintaining the proliferative and undifferentiated state of myoblasts.


Subject(s)
Muscle Development , Muscle Fibers, Skeletal , Snail Family Transcription Factors/metabolism , Activating Transcription Factor 3/metabolism , Cell Differentiation , Cell Line , Fibroblast Growth Factors , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/physiology , Promoter Regions, Genetic/genetics , Up-Regulation
7.
Dev Cell ; 57(4): 480-495.e6, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35150612

ABSTRACT

Skeletal stem cells (SSCs) reside within a three-dimensional extracellular matrix (ECM) compartment and differentiate into multiple cell lineages, thereby controlling tissue maintenance and regeneration. Within this environment, SSCs can proteolytically remodel the surrounding ECM in response to growth factors that direct lineage commitment via undefined mechanisms. Here, we report that Mmp14-dependent ECM remodeling coordinates canonical Wnt signaling and guides stem cell fate by triggering an integrin-activated reorganization of the SCC cytoskeleton that controls nuclear lamin A/C levels via the linker of nucleoskeleton and cytoskeleton (LINC) complexes. In turn, SSC lamin A/C levels dictate the localization of emerin, an inner nuclear membrane protein whose ability to regulate ß-catenin activity modulates Wnt signaling while directing lineage commitment in vitro and in vivo. These findings define a previously undescribed axis wherein SSCs use Mmp14-dependent ECM remodeling to control cytoskeletal and nucleoskeletal organization, thereby governing Wnt-dependent stem cell fate decisions.


Subject(s)
Cell Differentiation/physiology , Cell Lineage/physiology , Lamin Type A/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway/physiology , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Humans , Nuclear Envelope/metabolism
8.
Oncogene ; 40(23): 4019-4032, 2021 06.
Article in English | MEDLINE | ID: mdl-34012098

ABSTRACT

Membrane Type 1 Matrix Metalloprotease (MT1-MMP) contributes to the invasive progression of breast cancers by degrading extracellular matrix tissues. Nucleoside diphosphate kinase, NME1/NM23-H1, has been identified as a metastasis suppressor; however, its contribution to local invasion in breast cancer is not known. Here, we report that NME1 is up-regulated in ductal carcinoma in situ (DCIS) as compared to normal breast epithelial tissues. NME1 levels drop in microinvasive and invasive components of breast tumor cells relative to synchronous DCIS foci. We find a strong anti-correlation between NME1 and plasma membrane MT1-MMP levels in the invasive components of breast tumors, particularly in aggressive histological grade III and triple-negative breast cancers. Knockout of NME1 accelerates the invasive transition of breast tumors in the intraductal xenograft model. At the mechanistic level, we find that MT1-MMP, NME1 and dynamin-2, a GTPase known to require GTP production by NME1 for its membrane fission activity in the endocytic pathway, interact in clathrin-coated vesicles at the plasma membrane. Loss of NME1 function increases MT1-MMP surface levels by inhibiting endocytic clearance. As a consequence, the ECM degradation and invasive potentials of breast cancer cells are enhanced. This study identifies the down-modulation of NME1 as a potent driver of the in situ-to invasive transition during breast cancer progression.


Subject(s)
Breast Neoplasms/metabolism , Dynamin II/metabolism , Extracellular Matrix/metabolism , Matrix Metalloproteinase 14/metabolism , NM23 Nucleoside Diphosphate Kinases/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line , Cell Movement/physiology , Female , Humans , Matrix Metalloproteinase 14/genetics , Mice , Mice, Nude , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Xenograft Model Antitumor Assays
9.
JCI Insight ; 5(12)2020 06 18.
Article in English | MEDLINE | ID: mdl-32644051

ABSTRACT

In pulmonary hypertension and certain forms of congenital heart disease, ventricular pressure overload manifests at birth and is an obligate hemodynamic abnormality that stimulates myocardial fibrosis, which leads to ventricular dysfunction and poor clinical outcomes. Thus, an attractive strategy is to attenuate the myocardial fibrosis to help preserve ventricular function. Here, by analyzing RNA-sequencing databases and comparing the transcript and protein levels of fibrillar collagen in WT and global-knockout mice, we found that slit guidance ligand 3 (SLIT3) was present predominantly in fibrillar collagen-producing cells and that SLIT3 deficiency attenuated collagen production in the heart and other nonneuronal tissues. We then performed transverse aortic constriction or pulmonary artery banding to induce left and right ventricular pressure overload, respectively, in WT and knockout mice. We discovered that SLIT3 deficiency abrogated fibrotic and hypertrophic changes and promoted long-term ventricular function and overall survival in both left and right ventricular pressure overload. Furthermore, we found that SLIT3 stimulated fibroblast activity and fibrillar collagen production, which coincided with the transcription and nuclear localization of the mechanotransducer yes-associated protein 1. These results indicate that SLIT3 is important for regulating fibroblast activity and fibrillar collagen synthesis in an autocrine manner, making it a potential therapeutic target for fibrotic diseases, especially myocardial fibrosis and adverse remodeling induced by persistent afterload elevation.


Subject(s)
Fibrosis/genetics , Membrane Proteins/deficiency , Myocardium/pathology , Ventricular Remodeling/genetics , Animals , Collagen/metabolism , Echocardiography/methods , Heart/physiopathology , Heart Failure/genetics , Heart Failure/metabolism , Hypertension, Pulmonary/metabolism , Mice, Knockout
10.
J Clin Invest ; 130(10): 5444-5460, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32673290

ABSTRACT

Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.


Subject(s)
Extremities/injuries , Mesenchymal Stem Cells/pathology , Mesenchymal Stem Cells/physiology , Ossification, Heterotopic/etiology , Restraint, Physical , Acyltransferases , Adipogenesis/genetics , Animals , Cell Differentiation , Cell Lineage , Disease Models, Animal , Extracellular Matrix/metabolism , Focal Adhesion Kinase 1/deficiency , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Humans , Male , Mechanotransduction, Cellular/genetics , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Ossification, Heterotopic/pathology , Ossification, Heterotopic/physiopathology , Osteogenesis/genetics , Restraint, Physical/adverse effects , Restraint, Physical/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Stem Cells Transl Med ; 9(9): 1102-1113, 2020 09.
Article in English | MEDLINE | ID: mdl-32470195

ABSTRACT

Although mesenchymal stem/stromal cells (MSCs) are being explored in numerous clinical trials as proangiogenic and proregenerative agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly understood. Complicating the functional comparison of different types of MSCs are the confounding effects of donor age, genetic background, and health status of the donor. Leveraging a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone and thymus tissues from the same neonatal patients, thereby controlling for these confounding factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo and they were also more motile and efficient at invading ECM in vitro. These functional differences were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive behaviors, which are in part mediated by the paracrine and autocrine effects of SLIT3.


Subject(s)
Membrane Proteins/metabolism , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Thymus Gland/cytology , Animals , Animals, Newborn , Humans , Infant, Newborn , Mice, Inbred NOD , Mice, SCID , Organ Specificity , Pericytes/metabolism , Roundabout Proteins
12.
Sci Transl Med ; 12(529)2020 02 05.
Article in English | MEDLINE | ID: mdl-32024800

ABSTRACT

Osteoclasts actively remodel both the mineral and proteinaceous components of bone during normal growth and development as well as pathologic states ranging from osteoporosis to bone metastasis. The cysteine proteinase cathepsin K confers osteoclasts with potent type I collagenolytic activity; however, cathepsin K-null mice, as well as cathepsin K-mutant humans, continue to remodel bone and degrade collagen by as-yet-undefined effectors. Here, we identify a cathepsin K-independent collagenolytic system in osteoclasts that is composed of a functionally redundant network of the secreted matrix metalloproteinase MMP9 and the membrane-anchored matrix metalloproteinase MMP14. Unexpectedly, whereas deleting either of the proteinases individually leaves bone resorption intact, dual targeting of Mmp9 and Mmp14 inhibited the resorptive activity of mouse osteoclasts in vitro and in vivo and human osteoclasts in vitro. In vivo, Mmp9/Mmp14 conditional double-knockout mice exhibited marked increases in bone density and displayed a highly protected status against either parathyroid hormone- or ovariectomy-induced pathologic bone loss. Together, these studies characterize a collagenolytic system operative in mouse and human osteoclasts and identify the MMP9/MMP14 axis as a potential target for therapeutic interventions for bone-wasting disease states.


Subject(s)
Bone Resorption , Osteoporosis , Animals , Bone and Bones , Cathepsins , Female , Humans , Mice , Osteoclasts , Ovariectomy
13.
Nat Commun ; 10(1): 3210, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324807

ABSTRACT

Accumulating evidence indicates that the zinc-finger transcription factor ZEB1 is predominantly expressed in the stroma of several tumours. However, the role of stromal ZEB1 in tumour progression remains unexplored. In this study, while interrogating human databases, we uncover a remarkable decrease in relapse-free survival of breast cancer patients expressing high ZEB1 levels in the stroma. Using a mouse model of breast cancer, we show that ZEB1 inactivation in stromal fibroblasts suppresses tumour initiation, progression and metastasis. We associate this with reduced extracellular matrix remodeling, immune cell infiltration and decreased angiogenesis. ZEB1 deletion in stromal fibroblasts increases acetylation, expression and recruitment of p53 to FGF2/7, VEGF and IL6 promoters, thereby reducing their production and secretion into the surrounding stroma. Importantly, p53 ablation in ZEB1 stroma-deleted mammary tumours sufficiently recovers the impaired cancer growth and progression. Our findings identify the ZEB1/p53 axis as a stroma-specific signaling pathway that promotes mammary epithelial tumours.


Subject(s)
Fibroblasts/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Breast/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Extracellular Matrix/metabolism , Female , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 7/metabolism , Gene Deletion , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Humans , Interleukin-6 , Male , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Knockout , Neoplasm Recurrence, Local/metabolism , Neoplasms, Experimental , Neoplasms, Glandular and Epithelial/pathology , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics
14.
Chem Biol Drug Des ; 93(6): 1251-1264, 2019 06.
Article in English | MEDLINE | ID: mdl-30480376

ABSTRACT

Quantitative assessment of MT1-MMP cell surface-associated proteolytic activity remains undefined. Presently, MT1-MMP was stably expressed and a cell-based FRET assay developed to quantify activity toward synthetic collagen-model triple-helices. To estimate the importance of cell surface localization and specific structural domains on MT1-MMP proteolysis, activity measurements were performed using a series of membrane-anchored MT1-MMP mutants and compared directly with those of soluble MT1-MMP. MT1-MMP activity (kcat /KM ) on the cell surface was 4.8-fold lower compared with soluble MT1-MMP, with the effect largely manifested in kcat . Deletion of the MT1-MMP cytoplasmic tail enhanced cell surface activity, with both kcat and KM values affected, while deletion of the hemopexin-like domain negatively impacted KM and increased kcat . Overall, cell surface localization of MT1-MMP restricts substrate binding and protein-coupled motions (based on changes in both kcat and KM ) for catalysis. Comparison of soluble and cell surface-bound MT2-MMP revealed 12.9-fold lower activity on the cell surface. The cell-based assay was utilized for small molecule and triple-helical transition state analog MMP inhibitors, which were found to function similarly in solution and at the cell surface. These studies provide the first quantitative assessments of MT1-MMP activity and inhibition in the native cellular environment of the enzyme.


Subject(s)
Matrix Metalloproteinase 14/metabolism , Animals , COS Cells , Cell Membrane/enzymology , Chlorocebus aethiops , Humans , Kinetics , Proteolysis
15.
Dev Cell ; 47(2): 145-160.e6, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30269950

ABSTRACT

Metastasizing breast carcinoma cells have been hypothesized to mobilize tissue-invasive activity by co-opting the proteolytic systems employed by normal mammary epithelial cells undergoing branching morphogenesis. However, the critical effectors underlying morphogenesis remain unidentified, and their relationship to breast cancer invasion programs is yet to be established. Here, we identify the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, but not the closely related proteinase Mmp15/MT2-MMP, as the dominant proteolytic effector of both branching morphogenesis and carcinoma cell invasion in vivo. Unexpectedly, however, epithelial cell-specific targeting of Mmp14/MT1-MMP in the normal mammary gland fails to impair branching, whereas deleting the proteinase in carcinoma cells abrogates invasion, preserves matrix architecture, and completely blocks metastasis. By contrast, in the normal mammary gland, extracellular matrix remodeling and morphogenesis are ablated only when Mmp14/MT1-MMP expression is specifically deleted from the periductal stroma. Together, these findings uncover the overlapping but divergent strategies that underlie developmental versus neoplastic matrix remodeling programs.


Subject(s)
Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 14/physiology , Neoplasm Invasiveness/pathology , Animals , Breast Neoplasms/pathology , Cell Movement , Epithelial Cells/pathology , Epithelial Cells/physiology , Extracellular Matrix/pathology , Extracellular Matrix/physiology , Female , Humans , Mammary Glands, Animal/pathology , Matrix Metalloproteinase 15/metabolism , Mice , Morphogenesis , Neoplasm Metastasis/physiopathology , Transplantation, Heterologous
16.
Br J Pharmacol ; 175(14): 3034-3049, 2018 07.
Article in English | MEDLINE | ID: mdl-29722898

ABSTRACT

BACKGROUND AND PURPOSE: Indoleamine 2,3-dioxygenase 1 (IDO1) is emerging as an important new therapeutic target for treatment of malignant tumours characterized by dysregulated tryptophan metabolism. However, the antitumour efficacy of existing small-molecule inhibitors of IDO1 is still unsatisfactory and the underlying mechanism remains largely undefined. Hence, we discovered a novel potent small-molecule inhibitor of IDO1, LW106, and studied its antitumour effects and the underlying mechanisms in two tumour models. EXPERIMENTAL APPROACH: C57BL6 mice, athymic nude mice or Ido1-/- mice were inoculated with IDO1-expressing and -nonexpressing tumour cells and treated with vehicle, epacadostat or increasing doses of LW106. Xenografted tumours, plasma, spleens and other vital organs were harvested and subjected to kynurenine/tryptophan measurement and flow cytometric, histological and immunohistochemical analyses. KEY RESULTS: LW106 dose-dependently inhibited the outgrowth of xenografted tumours that were inoculated in C57BL6 mice but not nude mice or Ido1-/- mice, showing a stronger antitumour efficacy than epacadostat, an existing IDO1 inhibitor. LW106 substantially elevated intratumoural infiltration of proliferative Teff cells, while reducing recruitment of proliferative Treg cells and non-haematopoietic stromal cells such as endothelial cells and cancer-associated fibroblasts. LW106 treatment resulted in a reduced subpopulation of cancer stem cells (CSCs) in xenografted tumours in which fewer proliferative/invasive tumour cells and more apoptotic tumour cells were observed. CONCLUSIONS AND IMPLICATIONS: LW106 inhibits tumour outgrowth by limiting stroma-immune crosstalk and CSC enrichment in the tumour micro-environment. LW106 has potential as a immunotherapeutic agent for use in combination with immune checkpoint inhibitors and (or) chemotherapeutic drugs for cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Dioxygenases/antagonists & inhibitors , Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dioxygenases/genetics , Dioxygenases/metabolism , Humans , Kaplan-Meier Estimate , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Tumor Microenvironment/drug effects
17.
J Biol Chem ; 293(21): 8113-8127, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29643184

ABSTRACT

Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.


Subject(s)
Cell Membrane/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Hemopexin/metabolism , Matrix Metalloproteinase 14/physiology , Animals , Crystallography, X-Ray , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Protein Binding , Protein Transport
18.
Oncotarget ; 8(48): 83384-83406, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29137351

ABSTRACT

MicroRNAs are critical regulators of gene networks in normal and abnormal biological processes. Focusing on invasive ductal breast cancer (IDC), we have found dysregulated expression in tumor samples of several microRNAs, including the miR-200 family, along progression from primary tumors to distant metastases, further reflected in higher blood levels of miR-200b and miR-7 in IDC patients with regional or distant metastases relative to patients with primary node-negative tumors. Forced expression of miR-200s in MCF10CA1h mammary cells induced an enhanced epithelial program, aldehyde dehydrogenase (ALDH) activity, mammosphere growth and ability to form branched tubuloalveolar structures while promoting orthotopic tumor growth and lung colonization in vivo. MiR-200s also induced the constitutive activation of the PI3K-Akt signaling through downregulation of PTEN, and the enhanced mammosphere growth and ALDH activity induced in MCF10CA1h cells by miR-200s required the activation of this signaling pathway. Interestingly, the morphology of tumors formed in vivo by cells expressing miR-200s was reminiscent of metaplastic breast cancer (MBC). Indeed, the epithelial components of MBC samples expressed significantly higher levels of miR-200s than their mesenchymal components and displayed a marker profile compatible with luminal progenitor cells. We propose that microRNAs of the miR-200 family promote traits of highly proliferative breast luminal progenitor cells, thereby exacerbating the growth and metastatic properties of transformed mammary epithelial cells.

19.
J Cell Sci ; 130(23): 4013-4027, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29061881

ABSTRACT

Cadherin-based intercellular adhesions are essential players in epithelial homeostasis, but their dynamic regulation during tissue morphogenesis and remodeling remain largely undefined. Here, we characterize an unexpected role for the membrane-anchored metalloproteinase MT2-MMP in regulating epithelial cell quiescence. Following co-immunoprecipitation and mass spectrometry, the MT2-MMP cytosolic tail was found to interact with the zonula occludens protein-1 (ZO-1) at the apical junctions of polarized epithelial cells. Functionally, MT2-MMP localizes in the apical domain of epithelial cells where it cleaves E-cadherin and promotes epithelial cell accumulation, a phenotype observed in 2D polarized cells as well as 3D cysts. MT2-MMP-mediated cleavage subsequently disrupts apical E-cadherin-mediated cell quiescence resulting in relaxed apical cortical tension favoring cell extrusion and re-sorting of Src kinase activity to junctional complexes, thereby promoting proliferation. Physiologically, MT2-MMP loss of function alters E-cadherin distribution, leading to impaired 3D organoid formation by mouse colonic epithelial cells ex vivo and reduction of cell proliferation within intestinal crypts in vivo Taken together, these studies identify an MT2-MMP-E-cadherin axis that functions as a novel regulator of epithelial cell homeostasis in vivo.


Subject(s)
Cadherins/metabolism , Homeostasis/physiology , Intestinal Mucosa/metabolism , Matrix Metalloproteinase 15/metabolism , Adherens Junctions/metabolism , Cadherins/genetics , Cell Movement/physiology , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Humans , Intercellular Junctions/metabolism , Tight Junctions/metabolism
20.
ACS Nano ; 11(10): 9825-9835, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28877431

ABSTRACT

Collagen, the major structural component of nearly all mammalian tissues, undergoes extensive proteolytic remodeling during developmental states and a variety of life-threatening diseases such as cancer, myocardial infarction, and fibrosis. While degraded collagen could be an important marker of tissue damage, it is difficult to detect and target using conventional tools. Here, we show that a designed peptide (collagen hybridizing peptide: CHP), which specifically hybridizes to the degraded, unfolded collagen chains, can be used to image degraded collagen and inform tissue remodeling activity in various tissues: labeled with 5-carboxyfluorescein and biotin, CHPs enabled direct localization and quantification of collagen degradation in isolated tissues within pathologic states ranging from osteoarthritis and myocardial infarction to glomerulonephritis and pulmonary fibrosis, as well as in normal tissues during developmental programs associated with embryonic bone formation and skin aging. The results indicate the general correlation between the level of collagen remodeling and the amount of denatured collagen in tissue and show that the CHP probes can be used across species and collagen types, providing a versatile tool for not only pathology and developmental biology research but also histology-based disease diagnosis, staging, and therapeutic screening. This study lays the foundation for further testing CHP as a targeting moiety for theranostic delivery in various animal models.


Subject(s)
Bone Remodeling , Collagen/chemistry , Glomerulonephritis/pathology , Myocardial Infarction/pathology , Osteoarthritis/pathology , Peptides/chemistry , Pulmonary Fibrosis/pathology , Aged , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...