Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 459(7245): 398-400, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19458716

ABSTRACT

Towards the end of their lives, stars like the Sun greatly expand to become red giant stars. Such evolved stars could provide stringent tests of stellar theory, as many uncertainties of the internal stellar structure accumulate with age. Important examples are convective overshooting and rotational mixing during the central hydrogen-burning phase, which determine the mass of the helium core, but which are not well understood. In principle, analysis of radial and non-radial stellar oscillations can be used to constrain the mass of the helium core. Although all giants are expected to oscillate, it has hitherto been unclear whether non-radial modes are observable at all in red giants, or whether the oscillation modes have a short or a long mode lifetime, which determines the observational precision of the frequencies. Here we report the presence of radial and non-radial oscillations in more than 300 giant stars. For at least some of the giants, the mode lifetimes are of the order of a month. We observe giant stars with equally spaced frequency peaks in the Fourier spectrum of the time series, as well as giants for which the spectrum seems to be more complex. No satisfactory theoretical explanation currently exists for our observations.

2.
Science ; 322(5901): 558-60, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18948534

ABSTRACT

Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRoT (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.

3.
Nature ; 430(6995): 51-3, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15229593

ABSTRACT

Pressure-driven (p-mode) oscillations at the surface of the Sun, resulting from sound waves travelling through the solar interior, are a powerful probe of solar structure, just as seismology can reveal details about the interior of the Earth. Astronomers have hoped to exploit p-mode asteroseismology in Sun-like stars to test detailed models of stellar structure and evolution, but the observations are extremely difficult. The bright star Procyon has been considered one of the best candidates for asteroseismology, on the basis of models and previous reports of p-modes detected in ground-based spectroscopy. Here we present a search for p-modes in 32 days of nearly continuous photometric satellite-based observations of Procyon. If there are p-modes in Procyon, they must have lifetimes less than 2-3 days and/or peak amplitudes <15 parts per million, which defy expectations from the Sun's oscillations and previous theoretical predictions. Target selection for future planned asteroseismology space missions may need to be reconsidered, as will the theory of stellar oscillations.

SELECTION OF CITATIONS
SEARCH DETAIL