Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 799910, 2021.
Article in English | MEDLINE | ID: mdl-34956237

ABSTRACT

The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4+ cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4+ cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64Cu-radiolabeled CD4-Nb1 in CD4+ T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Molecular Imaging/methods , Optical Imaging/methods , Single-Domain Antibodies , Animals , Heterografts , Humans , Mice
2.
Antibodies (Basel) ; 8(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-31544816

ABSTRACT

Single-domain antibodies have emerged as highly versatile nanoprobes for advanced cellular imaging. For real-time visualization of endogenous antigens, fluorescently labelled nanobodies (chromobodies, CBs) are introduced as DNA-encoded expression constructs in living cells. Commonly, CB expression is driven from strong, constitutively active promoters. However, high expression levels are sometimes accompanied by misfolding and aggregation of those intracellular nanoprobes. Moreover, stable cell lines derived from random genomic insertion of CB-encoding transgenes bear the risk of disturbed cellular processes and inhomogeneous CB signal intensities due to gene positioning effects and epigenetic silencing. In this study we propose a strategy to generate optimized CB expressing cell lines. We demonstrate that expression as ubiquitin fusion increases the fraction of intracellularly functional CBs and identified the elongation factor 1α (EF1-α) promoter as highly suited for constitutive CB expression upon long-term cell line cultivation. Finally, we applied a CRISPR/Cas9-based gene editing approach for targeted insertion of CB expression constructs into the adeno-associated virus integration site 1 (AAVS1) safe harbour locus of human cells. Our results indicate that this combinatorial approach facilitates the generation of fully functional and stable CB cell lines for quantitative live-cell imaging of endogenous antigens.

SELECTION OF CITATIONS
SEARCH DETAIL
...