Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1386263, 2024.
Article in English | MEDLINE | ID: mdl-38716117

ABSTRACT

Schizophrenia is a serious mental health disorder that confers one of the highest mortality rates of all psychiatric illnesses. Although the disorder's psychotic symptoms are treatable with conventional antipsychotics, they remain incurable. Moreover, medication adherence is poor, and individuals with schizophrenia choose to self-medicate with illicit substances, including cannabis. It is well-established that the delta-9-tetrahydrocannabinol (delta-9-THC) component of cannabis elicits psychotomimetic effects at high doses; worsens schizophrenia-related psychosis; commonly develops into cannabis use disorder in individuals with schizophrenia; and increases the risk of earlier-onset schizophrenia symptoms in those harboring genetic susceptibility. However, individuals with schizophrenia commonly use cannabis and cannabis derivatives such as cannabidiol (CBD). These products seem to alleviate psychotic symptoms and relieve adverse side effects of antipsychotic medications. Therefore, one notion that has gained traction is the potential utility of cannabis-derived cannabidiol (CBD) as adjunct treatment to reduce schizophrenia-associated psychosis and other symptoms. Currently, preclinical and clinical data remain inconclusive. The present review distinguishes the mechanisms underlying schizophrenia-associated vs. cannabis-induced psychosis; reviews the evidence for delta-9-THC-mediated exacerbation vs. CBD-mediated amelioration of schizophrenia-associated psychosis; and describes potential approaches for incorporating CBD into schizophrenia therapeutic regimen in a safe and efficacious manner.

2.
Front Endocrinol (Lausanne) ; 14: 1205490, 2023.
Article in English | MEDLINE | ID: mdl-37396171

ABSTRACT

Obesity adversely impacts millions of American adults by predisposing them to significant health risks and further complications. Obesity is differentiated into two groups: metabolically healthy and metabolically unhealthy. In contrast to metabolically healthy counterparts, obese individuals who are metabolically unhealthy display hallmark symptoms of metabolic syndrome (e.g., hypertension, dyslipidemia, hyperglycemia, abdominal obesity). Gastroesophageal reflux disease (GERD) commonly occurs in all obese populations, as do poor dietary habits. Proton-pump inhibitors (PPIs), due to their wide availability, are most often used to treat GERD-related heartburn and other symptoms. Here, we review the evidence on how poor diet as well as short- and long-term use of PPIs adversely affect the gastrointestinal microbiota to cause dysbiosis. Key components of dysbiosis-induced metabolically unhealthy obesity (MUO) associated with PPI use include "leaky gut," systemic low-grade inflammation, and reduced amounts of short-chain fatty acids (SCFAs) such as butyrate that promote metabolic health. The benefit of using probiotics to mitigate PPI-induced dysbiosis and MUO is also discussed.


Subject(s)
Gastroesophageal Reflux , Proton Pump Inhibitors , Adult , Humans , United States , Proton Pump Inhibitors/adverse effects , Dysbiosis/chemically induced , Dysbiosis/complications , Obesity/complications , Gastroesophageal Reflux/diagnosis , Inflammation
3.
Innov Pharm ; 13(1)2022.
Article in English | MEDLINE | ID: mdl-36304675

ABSTRACT

The microbiome is the collection of commensal microorganisms along with their genomes inhabiting the human body. Despite the many known beneficial effects of these microbes on human health, the 2016 ACPE Standards for Doctor of Pharmacy curricula describe Medical Microbiology in Appendix 1 with a pathogen-centered focus. Over the last twenty years, evolving biotechnology has enabled a deeper understanding of the microbiome in the context of both wellness and disease. Retail stores are allocating increasing shelf space to commercial probiotic products, while the approach to PharmD training on the selection and use of these natural care products remains static, creating a disproportionate footprint between PharmD curricula and consumer markets. Looking to the future of patient care, we brief pharmacy educators on the current evidence and invite discussion around a proposed revision to the 2025 ACPE Standards that would add language recognizing the beneficial role of the commensal microbiota and expanding therapeutic applications of microbiome supplementation. We suggest a variety of opportunities within Doctor of Pharmacy curricula as leverage points for including relevant aspects of the microbiome in the training of future pharmacists.

4.
Obesity (Silver Spring) ; 24(11): 2344-2350, 2016 11.
Article in English | MEDLINE | ID: mdl-27664021

ABSTRACT

OBJECTIVE: To examine the effects of phentermine combined with a meal replacement program on weight loss and food cravings and to investigate the relationship between food cravings and weight loss. METHODS: In a 12-week randomized, double-blind, placebo-controlled clinical trial, 77 adults with obesity received either phentermine or placebo. All participants were provided Medifast® meal replacements, were instructed to follow the Take Shape for Life® Optimal Weight 5&1 Plan for weight loss, and received lifestyle coaching in the Habits of Health program. The Food Craving Inventory and the General Food Cravings State and Trait Questionnaires were used to measure food cravings. RESULTS: The phentermine group lost 12.1% of baseline body weight compared with 8.8% in the placebo group. Cravings for all food groups decreased in both groups; however, there was a greater reduction in cravings for fats and sweets in the phentermine group compared with the placebo group. Percent weight loss correlated significantly with reduced total food cravings (r = 0.332, P = 0.009), cravings for sweets (r = 0.412, P < 0.000), and state food cravings (r = 0.320, P = 0.007). CONCLUSIONS: Both phentermine combined with a meal replacement program and meal replacements alone significantly reduced body weight and food cravings; however, the addition of phentermine enhanced these effects.


Subject(s)
Appetite Depressants/administration & dosage , Craving/drug effects , Obesity/therapy , Phentermine/administration & dosage , Weight Loss/drug effects , Weight Reduction Programs/methods , Adult , Combined Modality Therapy , Double-Blind Method , Female , Humans , Life Style , Male , Meals/drug effects , Middle Aged
5.
Eur J Immunol ; 46(9): 2155-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27325567

ABSTRACT

Thymic stromal lymphopoietin (TSLP) and IL-7 are cytokines that signal via the IL-7 receptor alpha (IL-7Rα) to exert both overlapping and unique functions during early stages of mouse B-cell development. In human B lymphopoiesis, the requirement for IL-7Rα signaling is controversial and the roles of IL-7 and TSLP are less clear. Here, we evaluated human B-cell production using novel in vitro and xenograft models of human B-cell development that provide selective IL-7 and human TSLP (hTSLP) stimulation. We show that in vitro human B-cell production is almost completely blocked in the absence of IL-7Rα stimulation, and that either TSLP or IL-7 can provide a signal critical for the production and proliferation of human CD19(+) PAX5(+) pro-B cells. Analysis of primary human bone marrow stromal cells shows that they express both IL-7 and TSLP, providing an in vivo source of these cytokines. We further show that the in vivo production of human pro-B cells under the influence of mouse IL-7 in a xenograft scenario is reduced by anti-IL-7 neutralizing antibodies, and that this loss can be restored by hTSLP at physiological levels. These data establish the importance of IL-7Rα mediated signals for normal human B-cell production.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cytokines/metabolism , Interleukin-7/metabolism , Lymphopoiesis , Receptors, Interleukin-7/metabolism , Signal Transduction , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Cells, Cultured , Cytokines/pharmacology , Gene Expression , Humans , Interleukin-7/pharmacology , Lymphopoiesis/drug effects , Lymphopoiesis/immunology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Transgenic , Precursor Cells, B-Lymphoid/cytology , Precursor Cells, B-Lymphoid/drug effects , Precursor Cells, B-Lymphoid/metabolism , Signal Transduction/drug effects , Thymic Stromal Lymphopoietin
6.
Haematologica ; 101(4): 417-26, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26611474

ABSTRACT

Thymic stromal lymphopoietin (TSLP) stimulates in-vitro proliferation of human fetal B-cell precursors. However, its in-vivo role during normal human B lymphopoiesis is unknown. Genetic alterations that cause overexpression of its receptor component, cytokine receptor-like factor 2 (CRLF2), lead to high-risk B-cell acute lymphoblastic leukemia implicating this signaling pathway in leukemogenesis. We show that mouse thymic stromal lymphopoietin does not stimulate the downstream pathways (JAK/STAT5 and PI3K/AKT/mTOR) activated by the human cytokine in primary high-risk leukemia with overexpression of the receptor component. Thus, the utility of classic patient-derived xenografts for in-vivo studies of this pathway is limited. We engineered xenograft mice to produce human thymic stromal lymphopoietin (+T mice) by injection with stromal cells transduced to express the cytokine. Control (-T) mice were produced using stroma transduced with control vector. Normal levels of human thymic stromal lymphopoietin were achieved in sera of +T mice, but were undetectable in -T mice. Patient-derived xenografts generated from +T as compared to -T mice showed a 3-6-fold increase in normal human B-cell precursors that was maintained through later stages of B-cell development. Gene expression profiles in high-risk B-cell acute lymphoblastic leukemia expanded in +T mice indicate increased mTOR pathway activation and are more similar to the original patient sample than those from -T mice. +T/-T xenografts provide a novel pre-clinical model for understanding this pathway in B lymphopoiesis and identifying treatments for high-risk B-cell acute lymphoblastic leukemia with overexpression of cytokine-like factor receptor 2.


Subject(s)
Heterografts/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cells, B-Lymphoid/metabolism , Receptors, Cytokine/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Heterografts/immunology , Humans , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Lymphocyte Count , Lymphopoiesis/genetics , Lymphopoiesis/immunology , Mice , Mice, Transgenic , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/immunology , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Cytokine/genetics , Ribosomal Protein S6 Kinases/genetics , Ribosomal Protein S6 Kinases/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transgenes , Transplantation, Heterologous
7.
J Immunol ; 192(10): 4610-9, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24719464

ABSTRACT

Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Coexpression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. In this study, we validate these markers for identifying analogous subsets in humans and use them to compare the nonmemory B cell pools in mice and humans, across tissues, and during fetal/neonatal and adult life. Among human CD19(+)IgM(+) B cells, the CD21/CD24 schema identifies distinct populations that correspond to transitional 1 (T1), transitional 2 (T2), follicular mature, and marginal zone subsets identified in mice. Markers specific to human B cell development validate the identity of marginal zone cells and the maturation status of human CD21/CD24 nonmemory B cell subsets. A comparison of the nonmemory B cell pools in bone marrow, blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the nonmemory B cell pool in mouse bone marrow, in which their frequency is more than twice that in humans. Conversely, in spleen, the T1:T2 ratio shows that T2 cells are proportionally ∼ 8-fold higher in humans than in mice. Despite the relatively small contribution of transitional B cells to the human nonmemory pool, the number of naive follicular mature cells produced per transitional B cell is 3- to 6-fold higher across tissues than in mice. These data suggest differing dynamics or mechanisms produce the nonmemory B cell compartments in mice and humans.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/immunology , CD24 Antigen/immunology , Receptors, Complement 3d/immunology , Adult , Animals , B-Lymphocytes/cytology , Humans , Infant, Newborn , Male , Mice , Middle Aged , Species Specificity
8.
Biol Reprod ; 87(5): 106, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22914314

ABSTRACT

Remodeling of the cervix is a critical early component of parturition and resembles an inflammatory process. Infiltration and activation of myeloid immune cells along with production of proinflammatory mediators and proteolytic enzymes are hypothesized to regulate cervical remodeling as pregnancy nears term. The present study standardized an approach to assess resident populations of immune cells and phenotypic markers of functional activities related to the mechanism of extracellular matrix degradation in the cervix in preparation for birth. Analysis of cells from the dispersed cervix of mice that were nonpregnant or pregnant (Days 15 and 18 postbreeding) by multicolor flow cytometry indicated increased total cell numbers with pregnancy as well as increased numbers of macrophages, the predominant myeloid cell, by Day 18, the day before birth. The number of activated macrophages involved in matrix metalloproteinase induction (CD147) and signaling for matrix adhesion (CD169) significantly increased by the day before birth. Expression of the adhesion markers CD54 and CD11b by macrophages decreased in the cervix by Day 18 versus that on Day 15 or in nonpregnant mice. The census of cells that expressed the migration marker CD62L was unaffected by pregnancy. The data suggest that remodeling of the cervix at term in mice is associated with recruitment and selective activation of macrophages that promote extracellular matrix degradation. Indices of immigration and activities by macrophages may thus serve as markers for local immune cell activity that is critical for ripening of the cervix in the final common mechanism for parturition at term.


Subject(s)
Cervical Ripening/physiology , Cervix Uteri/cytology , Cervix Uteri/physiology , Macrophage Activation/physiology , Myeloid Cells/physiology , Parturition/physiology , Animals , Cell Adhesion/physiology , Cell Count , Cervical Ripening/immunology , Enzyme Induction/physiology , Extracellular Matrix/metabolism , Female , Gestational Age , Macrophages/physiology , Matrix Metalloproteinases/biosynthesis , Mice , Mice, Inbred C3H , Pregnancy
9.
Peptides ; 32(10): 2058-66, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21878358

ABSTRACT

Successful thymocyte maturation is essential for normal, peripheral T cell function. Vasoactive intestinal peptide (VIP) is a neuropeptide which is highly expressed in the thymus that has been shown to modulate thymocyte development. VIP predominantly binds two G protein coupled receptors, termed vasoactive intestinal peptide receptor 1 (VPAC1) and VPAC2, but their expression profiles in CD4(-)/CD8(-) (double negative, DN) thymocyte subsets, termed DN1-4, have yet to be identified. We hypothesized that a high VPAC1:VPAC2 ratio in the earliest thymocyte progenitors (ETP cells) would be reversed during early lymphopoiesis as observed in activated, peripheral Th(2) cells, as the thymus is rich in Th(2) cytokines. In support of this hypothesis, high VPAC1 mRNA levels decreased 1000-fold, accompanied with a simultaneous increase in VPAC2 mRNA expression during early thymocyte progenitor (ETP/DN1)→DN3 differentiation. Moreover, arrested DN3 cells derived from an Ikaros null mouse (JE-131 cells) failed to completely reverse the VIP receptor ratio compared to wild type DN3 thymocytes. Surprisingly, VPAC2(-/-) mice did not show significant changes in relative thymocyte subset numbers. These data support the notion that both VPAC1 and VPAC2 receptors are dynamically regulated by Ikaros, a master transcriptional regulator for thymocyte differentiation, during early thymic development. Moreover, high VPAC1 mRNA is a novel marker for the ETP population making it enticing to speculate that the chemotactic VIP/VPAC1 signaling axis may play a role in thymocyte movement. Also, despite the results that VPAC2 deficiency did not affect thymic subset numbers, future studies are necessary to determine whether downstream T cell phenotypic changes manifest themselves, such as a propensity for a Th(1) versus Th(2) polarization.


Subject(s)
Lymphopoiesis/physiology , Receptors, Vasoactive Intestinal Peptide, Type II/metabolism , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Animals , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Lymphocyte Subsets/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Vasoactive Intestinal Peptide, Type II/genetics , Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics , Thymocytes/cytology , Thymocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...