Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
2.
Clin Transl Med ; 13(11): e1440, 2023 11.
Article in English | MEDLINE | ID: mdl-37948331

ABSTRACT

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Subject(s)
COVID-19 , Phospholipases A2, Secretory , Sepsis , Humans , SARS-CoV-2 , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Lipidomics , Leukocytes, Mononuclear , Leukotriene E4 , Prostaglandin D2 , Cyclooxygenase 2 , Eicosanoids
3.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961230

ABSTRACT

Rhythmicity is a central feature of behavioral and biological processes including metabolism, however, the mechanisms of metabolite cycling are poorly understood. A robust oscillation in a network of key metabolite pathways downstream of glucose is described in humans, then these pathways mechanistically probed through purpose-built 13C6-glucose isotope tracing in Drosophila every 4h. A temporal peak in biosynthesis was noted by broad labelling of pathways downstream of glucose in wild-type flies shortly following lights on. Krebs cycle labelling was generally increased in a hyperactive mutant (fumin) along with glycolysis labelling primarily observed at dawn. Surprisingly, neither underlying feeding rhythms nor the presence of food explains the rhythmicity of glucose processing across genotypes. These results are consistent with clinical data demonstrating detrimental effects of mis-timed energy intake. This approach provides a window into the dynamic range of metabolic processing ability through the day and mechanistic basis for exploring circadian metabolic homeostasis in disease states.

4.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961245

ABSTRACT

Sleep is an almost universally required state in biology. Disrupted sleep has been associated with adverse health risks including metabolic perturbations. Sleep is in part regulated via circadian mechanisms, however, metabolic dysfunction at different times of day arising from sleep disruption is unclear. We used targeted liquid chromatography-mass spectrometry to probe metabolic alterations using high-resolution temporal sampling of two Drosophila short sleep mutants, fumin and sleepless, across a circadian day. Discriminant analyses revealed overall distinct metabolic profiles for mutants when compared to a wild type dataset. Altered levels of metabolites involved in nicotinate/nicotinamide, alanine, aspartate, and glutamate, glyoxylate and dicarboxylate metabolism, and the TCA cycle were observed in mutants suggesting increased energetic demands. Furthermore, rhythmicity analyses revealed fewer 24 hr rhythmic metabolites in both mutants. Interestingly, mutants displayed two major peaks in phases while wild type displayed phases that were less concerted. In contrast to 24 hr rhythmic metabolites, an increase in the number of 12 hr rhythmic metabolites was observed in fumin while sleepless displayed a decrease. These results support that decreased sleep alters the overall metabolic profile with short sleep mutants displaying altered metabolite levels associated with a number of pathways in addition to altered neurotransmitter levels.

5.
Sleep ; 46(11)2023 11 08.
Article in English | MEDLINE | ID: mdl-37738102

ABSTRACT

STUDY OBJECTIVES: Insufficient sleep is a concerning hallmark of modern society because sleep deprivation (SD) is a risk factor for neurodegenerative and cardiometabolic disorders. SD imparts an aging-like effect on learning and memory, although little is known about possible common molecular underpinnings of SD and aging. Here, we examine this question by profiling metabolic features across different tissues after acute SD in young adult and aged mice. METHODS: Young adult and aged mice were subjected to acute SD for 5 hours. Blood plasma, hippocampus, and liver samples were subjected to UPLC-MS/MS-based metabolic profiling. RESULTS: SD preferentially impacts peripheral plasma and liver profiles (e.g. ketone body metabolism) whereas the hippocampus is more impacted by aging. We further demonstrate that aged animals exhibit SD-like metabolic features at baseline. Hepatic alterations include parallel changes in nicotinamide metabolism between aging and SD in young animals. Overall, metabolism in young adult animals is more impacted by SD, which in turn induces aging-like features. A set of nine metabolites was classified (79% correct) based on age and sleep status across all four groups. CONCLUSIONS: Our metabolic observations demonstrate striking parallels to previous observations in studies of learning and memory and define a molecular metabolic signature of sleep loss and aging.


Subject(s)
Sleep Deprivation , Tandem Mass Spectrometry , Mice , Animals , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Chromatography, Liquid , Sleep , Aging
6.
J Am Soc Mass Spectrom ; 34(9): 1970-1978, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37540625

ABSTRACT

Increased access to cheap and rapid mass spectrometry testing of biofluids is desirable for the analysis of disorders and diseases that may be linked to alterations in metabolite or lipid levels. The objective of this study is to establish an easily customized high-throughput workflow for the analysis of biological samples using desorption electrospray ionization-mass spectrometry (DESI-MS). The guiding principles of this workflow are the use of low-cost, open-source, and readily accessible materials with high-throughput and reproducibility. The design consists of 3 steps: (1) PARAFILM surface customization of size, shape, and depth of features on PARAFILM via 3D printed molds; (2) sample spotting via high-throughput robotics using the relatively inexpensive and open-source Opentrons platform to reduce variability and increase reliability of sample spotting; and (3) an open-source point-and-click graphical user interface (MSI.EAGLE) for data analysis via the R statistical language building on the Cardinal package. Here we describe this workflow and test optimal surface ionization characteristics by comparison of serum extracts spotted on PARAFILM and on PTFE (porous and nonporous). Untargeted analysis across three surfaces suggests that they are all suitable for ionization of a wide range of metabolites and lipids, with 3983 m/z features detected. Differential analysis of polar vs nonpolar serum extracts suggests that ∼80% of ions are desorbed preferentially from different surfaces. PARAFILM is less impacted by the interference of background ions derived from the surface. The developed system allows for a wide range of researchers to access custom surface design workflows and high-throughput analyses in a highly cost-effective manner.


Subject(s)
Lipidomics , Paraffin , Reproducibility of Results , Lipidomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Ions
7.
PLoS Genet ; 19(8): e1010904, 2023 08.
Article in English | MEDLINE | ID: mdl-37639465

ABSTRACT

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.


Subject(s)
Circadian Rhythm , Neoplasms , Proto-Oncogene Proteins c-myc , Humans , Amino Acids/metabolism , Cell Line , Cell Membrane , Metabolomics , Neoplasms/genetics , Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/metabolism
8.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37398323

ABSTRACT

Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.

9.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Article in English | MEDLINE | ID: mdl-37105582

ABSTRACT

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Pilot Projects , Proteomics , Antibodies, Viral , Immunoglobulin G , Vaccination , Immunity , Anti-Inflammatory Agents
10.
Cell Metab ; 35(3): 517-534.e8, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36804058

ABSTRACT

The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.


Subject(s)
Glioblastoma , Receptors, Chimeric Antigen , Animals , Mice , Humans , Glioblastoma/therapy , Glioblastoma/metabolism , Phosphoglycerate Dehydrogenase/metabolism , Cell Line, Tumor , Immunotherapy, Adoptive , T-Lymphocytes/metabolism , Tumor Microenvironment
11.
bioRxiv ; 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-36711638

ABSTRACT

The molecular circadian clock, which controls rhythmic 24-hour oscillation of genes, proteins, and metabolites in healthy tissues, is disrupted across many human cancers. Deregulated expression of the MYC oncoprotein has been shown to alter expression of molecular clock genes, leading to a disruption of molecular clock oscillation across cancer types. It remains unclear what benefit cancer cells gain from suppressing clock oscillation, and how this loss of molecular clock oscillation impacts global gene expression and metabolism in cancer. We hypothesized that MYC or its paralog N-MYC (collectively termed MYC herein) suppress oscillation of gene expression and metabolism to upregulate pathways involved in biosynthesis in a static, non-oscillatory fashion. To test this, cells from distinct cancer types with inducible MYC were examined, using time-series RNA-sequencing and metabolomics, to determine the extent to which MYC activation disrupts global oscillation of genes, gene expression pathways, and metabolites. We focused our analyses on genes, pathways, and metabolites that changed in common across multiple cancer cell line models. We report here that MYC disrupted over 85% of oscillating genes, while instead promoting enhanced ribosomal and mitochondrial biogenesis and suppressed cell attachment pathways. Notably, when MYC is activated, biosynthetic programs that were formerly circadian flipped to being upregulated in an oscillation-free manner. Further, activation of MYC ablates the oscillation of nutrient transporter proteins while greatly upregulating transporter expression, cell surface localization, and intracellular amino acid pools. Finally, we report that MYC disrupts metabolite oscillations and the temporal segregation of amino acid metabolism from nucleotide metabolism. Our results demonstrate that MYC disruption of the molecular circadian clock releases metabolic and biosynthetic processes from circadian control, which may provide a distinct advantage to cancer cells.

12.
Nat Commun ; 13(1): 6623, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333297

ABSTRACT

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Subject(s)
Cross-Priming , Lung Neoplasms , Mice , Humans , Animals , Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Dendritic Cells , Lung Neoplasms/metabolism , Lysosomes , Mice, Inbred C57BL , Tumor Microenvironment
13.
Cell Metab ; 34(9): 1342-1358.e7, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36070682

ABSTRACT

Effector trogocytosis between malignant cells and tumor-specific cytotoxic T lymphocytes (CTLs) contributes to immune evasion through antigen loss on target cells and fratricide of antigen-experienced CTLs by other CTLs. The mechanisms regulating these events in tumors remain poorly understood. Here, we demonstrate that tumor-derived factors (TDFs) stimulated effector trogocytosis and restricted CTLs' tumoricidal activity and viability in vitro. TDFs robustly altered the CTL's lipid profile, including depletion of 25-hydroxycholesterol (25HC). 25HC inhibited trogocytosis and prevented CTL's inactivation and fratricide. Mechanistically, TDFs induced ATF3 transcription factor that suppressed the expression of 25HC-regulating gene-cholesterol 25-hydroxylase (CH25H). Stimulation of trogocytosis in the intratumoral CTL by the ATF3-CH25H axis attenuated anti-tumor immunity, stimulated tumor growth, and impeded the efficacy of chimeric antigen receptor (CAR) T cell adoptive therapy. Through use of armored CAR constructs or pharmacologic agents restoring CH25H expression, we reversed these phenotypes and increased the efficacy of immunotherapies.


Subject(s)
T-Lymphocytes, Cytotoxic , Trogocytosis , Immunotherapy , Steroid Hydroxylases , Virus Replication/genetics
14.
ACS Appl Mater Interfaces ; 13(49): 58401-58410, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34846845

ABSTRACT

Most current nanoparticle formulations have relatively low clearance efficiency, which may hamper their likelihood for clinical translation. Herein, we sought to compare the clearance and cellular distribution profiles between sub-5 nm, renally-excretable silver sulfide nanoparticles (Ag2S-NPs) synthesized via either a bulk, high temperature, or a microfluidic, room temperature approach. We found that the thermolysis approach led to significant ligand degradation, but the surface coating shell was unaffected by the microfluidic synthesis. We demonstrated that the clearance was improved for Ag2S-NPs with intact ligands, with less uptake in the liver. Moreover, differential distribution in hepatic cells was observed, where Ag2S-NPs with degraded coatings tend to accumulate in Kupffer cells and those with intact coatings are more frequently found in hepatocytes. Therefore, understanding the impact of synthetic processes on ligand integrity and subsequent nano-biointeractions will aid in designing nanoparticle platforms with enhanced clearance and desired distribution profiles.


Subject(s)
Coated Materials, Biocompatible/metabolism , Nanoparticles/metabolism , Silver Compounds/metabolism , Animals , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Female , Ligands , Liver/chemistry , Liver/metabolism , Materials Testing , Mice , Mice, Nude , Nanoparticles/chemistry , Particle Size , Silver Compounds/chemistry , Tomography, X-Ray Computed
15.
J Clin Psychiatry ; 82(5)2021 08 24.
Article in English | MEDLINE | ID: mdl-34428360

ABSTRACT

Objective: Insomnia is prevalent and is associated with a range of negative sequelae. Cognitive behavioral treatment for insomnia (CBT-I) is the recommended intervention, but availability is limited. Telehealth provides increased access, but its efficacy is not certain. The objective of this study was to compare the efficacy of CBT-I delivered by telehealth to in-person treatment and to a waitlist control.Methods: Individuals with DSM-5 insomnia disorder (n = 60) were randomized to telehealth CBT-I, in-person CBT-I, or 8-week waitlist control. CBT-I was delivered over 6-8 weekly sessions by video telehealth or in-person in an outpatient clinic. Follow-up assessments were at 2 weeks and 3 months posttreatment. The Insomnia Severity Index (ISI) was the primary outcome. Change in ISI score was compared between the CBT-I group in an intent-to-treat, noninferiority analysis using an a priori margin of -3.0 points. All analyses were conducted using mixed-effects models. Data collection occurred from November 2017-July 2020.Results: The mean (SD) change in ISI score from baseline to 3-month follow-up was -7.8 (6.1) points for in-person CBT-I, -7.5 (6.9) points for telehealth, and -1.6 (2.1) for waitlist, and the difference between the CBT-I groups was not statistically significant (t28 = -0.98, P = .33). The lower confidence limit of this between-group difference in the mean ISI changes was greater than the a priori margin of -3.0 points, indicating that telehealth treatment was not inferior to in-person treatment. There were significant improvements on most secondary outcome measures but no group differences.Conclusions: Telehealth CBT-I may produce clinically significant improvements in insomnia severity that are noninferior to in-person treatment. CBT-I is also associated with significant gains across a range of domains of functioning. Telehealth is a promising option for increasing access to treatment without loss of clinical gains.Trial Registration: ClinicalTrials.gov identifier: NCT03328585.


Subject(s)
Cognitive Behavioral Therapy/methods , Sleep Initiation and Maintenance Disorders/therapy , Telemedicine/methods , Adult , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
16.
Nat Commun ; 12(1): 377, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452240

ABSTRACT

Circadian clocks coordinate mammalian behavior and physiology enabling organisms to anticipate 24-hour cycles. Transcription-translation feedback loops are thought to drive these clocks in most of mammalian cells. However, red blood cells (RBCs), which do not contain a nucleus, and cannot perform transcription or translation, nonetheless exhibit circadian redox rhythms. Here we show human RBCs display circadian regulation of glucose metabolism, which is required to sustain daily redox oscillations. We found daily rhythms of metabolite levels and flux through glycolysis and the pentose phosphate pathway (PPP). We show that inhibition of critical enzymes in either pathway abolished 24-hour rhythms in metabolic flux and redox oscillations, and determined that metabolic oscillations are necessary for redox rhythmicity. Furthermore, metabolic flux rhythms also occur in nucleated cells, and persist when the core transcriptional circadian clockwork is absent in Bmal1 knockouts. Thus, we propose that rhythmic glucose metabolism is an integral process in circadian rhythms.


Subject(s)
Circadian Clocks/physiology , Circadian Rhythm/physiology , Erythrocytes/metabolism , Glycolysis/physiology , Pentose Phosphate Pathway/physiology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , Cells, Cultured , Fibroblasts , Gene Knockout Techniques , Healthy Volunteers , Humans , Male , Metabolomics , Mice , Oxidation-Reduction , Primary Cell Culture
17.
Front Toxicol ; 3: 750870, 2021.
Article in English | MEDLINE | ID: mdl-35295106

ABSTRACT

Endocrine disrupting chemicals mimic or disrupt action of the natural hormones, adversely impacting hormonal function as well as cardiovascular, reproductive, and metabolic health. Goldfish are seasonal breeders with an annual reproductive cycle regulated by neuroendocrine signaling which involves allocation of metabolic energy to sustain growth and reproduction. We hypothesize that seasonal changes in physiology alter overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants. In this study, we assess effects of endogenous hormones, individual contaminants and their mixture on metabolism of goldfish at different reproductive stages. Exposure effects were assessed using 1H-NMR metabolomics profiling of male goldfish midbrain, gonad and liver harvested during early recrudescence (October), mid-recrudescence (February) and late recrudescence (June). Compounds assessed include bisphenol A, nonylphenol, bis(2-ethylhexyl) phthalate, fucosterol and a tertiary mixture (DEHP + NP + FS). Metabolome-level responses induced by contaminant exposure across tissues and seasons were benchmarked against responses induced by 17ß-estradiol, testosterone and thyroid hormone (T3). We observe a clear seasonal dependence to metabolome-level alteration induced by hormone or contaminant exposures, with February (mid-recrudescence) the stage at which male goldfish are most vulnerable to metabolic perturbation. Responses induced by contaminant exposures differed from those induced by the natural hormones in a season-specific manner. Exposure to the tertiary mixture induced a functional gain at the level of biochemical pathways modeling over responses induced by individual components in select tissues and seasons. We demonstrate the importance of seasonally driven changes in physiology altering overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants, the relevance of which likely extends to other seasonally-breeding species.

18.
Gen Comp Endocrinol ; 301: 113650, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33166531

ABSTRACT

Endocrine disrupting chemicals (EDCs) are endocrine-active chemical pollutants that disrupt reproductive, neuroendocrine, cardiovascular and metabolic health across species. The circadian clock is a transcriptional oscillator responsible for entraining 24-hour rhythms of physiology, behavior and metabolism. Extensive bidirectional cross talk exists between circadian and endocrine systems and circadian rhythmicity is present at all levels of endocrine control, from synthesis and release of hormones, to sensitivity of target tissues to hormone action. In mammals, a range of hormones directly alter clock gene expression and circadian physiology via nuclear receptor (NR) binding and subsequent genomic action, modulating physiological processes such as nutrient and energy metabolism, stress response, reproductive physiology and circadian behavioral rhythms. The potential for EDCs to perturb circadian clocks or circadian-driven physiology is not well characterized. For this reason, we explore evidence for parallel endocrine and circadian disruption following EDC exposure across species. In the reviewed studies, EDCs dysregulated core clock and circadian rhythm network gene expression in brain and peripheral organs, and altered circadian reproductive, behavioral and metabolic rhythms. Circadian impacts occurred in parallel to endocrine and metabolic alterations such as impaired fertility and dysregulated metabolic and energetic homeostasis. Further research is warranted to understand the nature of interaction between circadian and endocrine systems in mediating physiological effects of EDC exposure at environmental levels.


Subject(s)
Circadian Clocks , Animals , Basic Helix-Loop-Helix Transcription Factors , Circadian Rhythm , Cryptochromes , Endocrine Disruptors/toxicity , Female , Homeodomain Proteins , Male , Mice , Mice, Inbred C57BL , Neurosecretory Systems , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Wistar , Zebrafish , Zebrafish Proteins
19.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33141762

ABSTRACT

As the interface between the gut microbiota and the mucosal immune system, there has been great interest in the maintenance of colonic epithelial integrity through mitochondrial oxidation of butyrate, a short-chain fatty acid produced by the gut microbiota. Herein, we showed that the intestinal epithelium could also oxidize long-chain fatty acids, and that luminally delivered acylcarnitines in bile could be consumed via apical absorption by the intestinal epithelium, resulting in mitochondrial oxidation. Finally, intestinal inflammation led to mitochondrial dysfunction in the apical domain of the surface epithelium that may reduce the consumption of fatty acids, contributing to higher concentrations of fecal acylcarnitines in murine Citrobacter rodentium-induced colitis and human inflammatory bowel disease. These results emphasized the importance of both the gut microbiota and the liver in the delivery of energy substrates for mitochondrial metabolism by the intestinal epithelium.


Subject(s)
Carnitine/analogs & derivatives , Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Liver/immunology , Mitochondria/immunology , Animals , Caco-2 Cells , Carnitine/immunology , Enterobacteriaceae Infections/pathology , Female , Humans , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred BALB C , Mitochondria/pathology
20.
Crit Care ; 24(1): 461, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32718333

ABSTRACT

INTRODUCTION: Pneumonia is the most common cause of mortality from infectious diseases, the second leading cause of nosocomial infection, and the leading cause of mortality among hospitalized adults. To improve clinical management, metabolomics has been increasingly applied to find specific metabolic biopatterns (profiling) for the diagnosis and prognosis of various infectious diseases, including pneumonia. METHODS: One hundred fifty bacterial community-acquired pneumonia (CAP) patients whose plasma samples were drawn within the first 24 h of hospital admission were enrolled in this study and separated into two age- and sex-matched cohorts: non-survivors (died ≤ 90 days) and survivors (survived > 90 days). Three analytical tools, 1H-NMR spectroscopy, GC-MS, and targeted DI-MS/MS, were used to prognosticate non-survivors from survivors by means of metabolic profiles. RESULTS: We show that quantitative lipid profiling using DI-MS/MS can predict the 90-day mortality and in-hospital mortality among patients with bacterial CAP compared to 1H-NMR- and GC-MS-based metabolomics. This study showed that the decreased lysophosphatidylcholines and increased acylcarnitines are significantly associated with increased mortality in bacterial CAP. Additionally, we found that decreased lysophosphatidylcholines and phosphatidylcholines (> 36 carbons) and increased acylcarnitines may be used to predict the prognosis of in-hospital mortality for bacterial CAP as well as the need for ICU admission and severity of bacterial CAP. DISCUSSION: This study demonstrates that lipid-based plasma metabolites can be used for the prognosis of 90-day mortality among patients with bacterial CAP. Moreover, lipid profiling can be utilized to identify patients with bacterial CAP who are at the highest risk of dying in hospital and who need ICU admission as well as the severity assessment of CAP.


Subject(s)
Hospital Mortality/trends , Lipids/analysis , Pneumonia/blood , Prognosis , Aged , Aged, 80 and over , Alberta , Case-Control Studies , Community-Acquired Infections/blood , Community-Acquired Infections/mortality , Female , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Lipids/blood , Male , Middle Aged , Pennsylvania , Pneumonia/mortality , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...