Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Publication year range
1.
ChemMedChem ; 16(2): 340-354, 2021 01 19.
Article in English | MEDLINE | ID: mdl-32930481

ABSTRACT

Inhibition of coronavirus (CoV)-encoded papain-like cysteine proteases (PLpro ) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure-activity relationships (SAR) of the noncovalent active-site directed inhibitor (R)-5-amino-2-methyl-N-(1-(naphthalen-1-yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the SARS-CoV PLpro . Moreover, we report the discovery of isoindolines as a new class of potent PLpro inhibitors. The studies also provide a deeper understanding of the binding modes of this inhibitor class. Importantly, the inhibitors were also confirmed to inhibit SARS-CoV-2 replication in cell culture suggesting that, due to the high structural similarities of the target proteases, inhibitors identified against SARS-CoV PLpro are valuable starting points for the development of new pan-coronaviral inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Benzamides/pharmacology , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Isoindoles/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Benzamides/chemical synthesis , Benzamides/metabolism , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/metabolism , Isoindoles/chemical synthesis , Isoindoles/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Structure-Activity Relationship , Vero Cells , Virus Replication/drug effects
2.
Chemphyschem ; 15(15): 3226-35, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25251382

ABSTRACT

The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approaches but protocols are missing that can reliably predict the influence of variations in the substitution pattern on the affinity and/or reactivity of a given covalent inhibitor. Hence, the wanted property profile can only be obtained from trial-and-error proceedings. This paper presents an appropriate protocol which is able to predict improved covalent inhibitors. It uses hybrid approaches, which mix quantum mechanical (QM) and molecular mechanical (MM) methods to predict variations in the reactivity of the inhibitor. They are also used to compute the required information about the non-covalent enzyme-inhibitor complex. Docking tools are employed to improve the inhibitor with respect to the non-covalent interactions formed in the binding site.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Enzymes/chemistry , Catalytic Domain , Enzyme Inhibitors/metabolism , Enzymes/metabolism , Epoxy Compounds/chemistry , HIV Protease/chemistry , HIV Protease/metabolism , Humans , Molecular Docking Simulation , Nitrophenols/chemistry , Quantum Theory
3.
ChemMedChem ; 6(1): 141-52, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21082722

ABSTRACT

A series of 52 cis-configured 1-alkyl-3-phenylaziridine-2-carboxylates were synthesized as new pseudo-irreversible inhibitors of Candida albicans secreted aspartic acid protease 1 (SAP1), SAP2, SAP3, and SAP8. Some of the compounds, which were obtained as diastereomers with S,S- and R,R-configured aziridine rings by Cromwell synthesis of racemic (2R,3S+2S,3R)-dibromophenylpropionic acid ester with amines, followed by ester hydrolysis and coupling to hydrophobic amino acid esters, were separated by preparative HPLC. The absolute configuration of the aziridine ring was assigned by a combination of experimental circular dichroism (CD) investigations and quantum chemical CD calculations. In agreement with previous docking studies, the diastereomers all exhibit similar activity. The compounds were found to be more active against the related mammalian enzyme cathepsin D, presumably due to productive interactions of the N-alkyl substituent with the highly lipophilic S2 pocket. The most active inhibitors (5, 9, 10, 21, and 28), characterized by benzyl, cyclohexylmethyl, tert-butyl, or 1,4-dimethylpentyl moieties at the aziridine nitrogen atom, exhibit k(2nd) values between 500 and 900×10³ M⁻¹ min⁻¹ and K(i) values near or below 1 µM for cathepsin D.


Subject(s)
Aspartic Acid Proteases , Aziridines , Cathepsin D , Enzyme Inhibitors , Isoenzymes , Aspartic Acid Proteases/antagonists & inhibitors , Aspartic Acid Proteases/metabolism , Aziridines/chemical synthesis , Aziridines/metabolism , Aziridines/pharmacology , Candida albicans/enzymology , Cathepsin D/antagonists & inhibitors , Cathepsin D/metabolism , Circular Dichroism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Kinetics , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL