Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS EST Air ; 1(5): 365-375, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38751609

ABSTRACT

Decamethylcyclopentasiloxane (D5), a common ingredient in many personal care products (PCPs), undergoes oxidation in the atmosphere, leading to the formation of secondary organic aerosol (SOA). Yet, the specific contributions of D5-derived SOA on ambient fine particulate matter (PM2.5) have not been characterized. This study addresses this knowledge gap by introducing a new analytical method to advance the molecular characterization of oxidized D5 and its detection in ambient aerosol. The newly developed reversed phase liquid chromatography method, in conjunction with high-resolution mass spectrometry, separates and detects D5 oxidation products, enabling new insights into their molecular and isomeric composition. Application of this method to laboratory-generated SOA and urban PM2.5 in New York City expands the number of D5 oxidation products observed in ambient aerosol and informs a list of molecular candidates to track D5-derived SOA in the atmosphere. An oxidation series was observed in which one or more methyl groups in D5 (C10H30O5Si5) is replaced by a hydroxyl group, which indicates the presence of multistep oxidation products in ambient PM2.5. Because of their specificity to PCPs and demonstrated detectability in ambient PM2.5, several oxidation products are proposed as molecular tracers for D5-derived SOA and may prove useful in assessing the impact of PCPs-derived SOA in the atmosphere.

2.
ACS Environ Au ; 2(5): 409-417, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36164352

ABSTRACT

To better understand the impact of plastic burning on atmospheric fine particulate matter (PM2.5), we evaluated two methods for the quantification of 1,3,5-triphenylbenzene (TPB), a molecular tracer of plastic burning. Compared to traditional solvent-extraction gas chromatography mass spectrometry (GCMS) techniques, thermal-desorption (TD) GCMS provided higher throughput, lower limits of detection, more precise spike recoveries, a wider linear quantification range, and reduced solvent use. This method enabled quantification of TPB in fine particulate matter (PM2.5) samples collected at rural and urban sites in the USA and Bangladesh. These analyses demonstrated a measurable impact of plastic burning at 5 of the 6 study locations, with the largest absolute and relative TPB concentrations occurring in Dhaka, Bangladesh, where plastic burning is expected to be a significant source of PM2.5. Background-level contributions of plastic burning in the USA were estimated to be 0.004-0.03 µg m-3 of PM2.5 mass. Across the four sites in the USA, the lower estimate of plastic burning contributions to PM2.5 ranged 0.04-0.8%, while the median estimate ranged 0.3-3% (save for Atlanta, Georgia, in the wintertime at 2-7%). The results demonstrate a consistent presence of plastic burning emissions in ambient PM2.5 across urban and rural sites in the USA, with a relatively small impact in comparison to other anthropogenic combustion sources in most cases. Much higher TPB concentrations were observed in Dhaka, with estimated plastic burning impacts on PM2.5 ranging from a lower estimate of 0.3-1.8 µg m-3 (0.6-2% of PM2.5) and the median estimate ranging 2-35 µg m-3 (5-15% of PM2.5). The methodological advances and new measurements presented herein help to assess the air quality impacts of burning plastic more broadly.

SELECTION OF CITATIONS
SEARCH DETAIL