Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12472, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528113

ABSTRACT

A high-frequency (1.5 kHz) spontaneous Raman spectroscopy measurement technique is developed and applied to measure external fluctuations generated in the local concentration of an isothermal binary gas mixture of methane and air. Raman excitation is provided by a high-frequency laser at 527 nm in dual-pulsed mode. The Stokes Raman signal is collected using an EMCCD camera coupled to a high-frequency intensifier as a shutter. The emitted signal is collected over the 596-627 nm wavelength range, which allows for the simultaneous tracking of methane and nitrogen Stokes Q-branch mode signals. Calibration curves are initially obtained for each species ([Formula: see text] and [Formula: see text]) based on steady-state concentrations, and further corrected during use to detect local unsteady mixture fluctuations at gas pulsation frequencies up to 250 Hz. The main novelty is the demonstration of Raman spectroscopy for the simultaneous multispecies measurement of unsteady concentrations of gas-phase methane and air mixtures using a laser beam with a high-repetition rate, low energy per pulse, combined with a high-frequency intensifier and a single camera.

2.
Appl Opt ; 58(10): C92-C103, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31045056

ABSTRACT

We report on a comparison of free-space and cavity-enhanced Raman spectroscopy for gas-phase measurements of nitrogen and oxygen in ambient air. Real-time analysis capabilities and continuous Raman signals with low power diodes make the technique non-invasive, affordable, compact, and applicable for usage in non-reacting flows. We derive a comprehensive model for estimation of photon emission for both free-space and cavity-based signals and discuss trade-offs in how to organize the cavity geometry for maximum gain relative to free space. Measurements in both free and cavity configurations are compared to the expected signals, demonstrating the usefulness of the model in predicting amplification. The present results can serve as a quick guide on how to use low-power continuous wave lasers in a cavity setup to obtain enhanced laser-induced spontaneous Raman scattering.

3.
Sci Rep ; 7(1): 14519, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109427

ABSTRACT

The floating catalyst chemical vapor deposition (FC-CVD) process permits macro-scale assembly of nanoscale materials, enabling continuous production of carbon nanotube (CNT) aerogels. Despite the intensive research in the field, fundamental uncertainties remain regarding how catalyst particle dynamics within the system influence the CNT aerogel formation, thus limiting effective scale-up. While aerogel formation in FC-CVD reactors requires a catalyst (typically iron, Fe) and a promotor (typically sulfur, S), their synergistic roles are not fully understood. This paper presents a paradigm shift in the understanding of the role of S in the process with new experimental studies identifying that S lowers the nucleation barrier of the catalyst nanoparticles. Furthermore, CNT aerogel formation requires a critical threshold of FexCy > 160 mg/m3, but is surprisingly independent of the initial catalyst diameter or number concentration. The robustness of the critical catalyst mass concentration principle is proved further by producing CNTs using alternative catalyst systems; Fe nanoparticles from a plasma spark generator and cobaltocene and nickelocene precursors. This finding provides evidence that low-cost and high throughput CNT aerogel routes may be achieved by decoupled and enhanced catalyst production and control, opening up new possibilities for large-scale CNT synthesis.

4.
ACS Photonics ; 3(3): 471-477, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-27077075

ABSTRACT

The near-field and far-field spectral response of plasmonic systems are often assumed to be identical, due to the lack of methods that can directly compare and correlate both responses under similar environmental conditions. We develop a widely tunable optical technique to probe the near-field resonances within individual plasmonic nanostructures that can be directly compared to the corresponding far-field response. In tightly coupled nanoparticle-on-mirror constructs with nanometer-sized gaps we find >40 meV blue-shifts of the near-field compared to the dark-field scattering peak, which agrees with full electromagnetic simulations. Using a transformation optics approach, we show such shifts arise from the different spectral interference between different gap modes in the near- and far-field. The control and tuning of near-field and far-field responses demonstrated here is of paramount importance in the design of optical nanostructures for field-enhanced spectroscopy, as well as to control near-field activity monitored through the far-field of nano-optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL