Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 29(11): 1080-1091, 2022 11.
Article in English | MEDLINE | ID: mdl-36344847

ABSTRACT

Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.


Subject(s)
Antibodies, Neutralizing , HIV-1 , Animals , Cryoelectron Microscopy , Macaca mulatta/metabolism , HIV-1/metabolism , Electron Microscope Tomography , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antibodies
2.
Sci Transl Med ; 14(658): eabl3927, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35976997

ABSTRACT

Unique gut microbiota compositions have been associated with inflammatory diseases, but identifying gut bacterial functions linked to immune activation in humans remains challenging. Translocation of pathogens from mucosal surfaces into peripheral tissues can elicit immune activation, although whether and which gut commensal bacteria translocate in inflammatory diseases is difficult to assess. We report that a subset of commensal gut microbiota constituents that translocate across the gut barrier in mice and humans are associated with heightened systemic immunoglobulin G (IgG) responses. We present a modified high-throughput, culture-independent approach to quantify systemic IgG against gut commensal bacteria in human serum samples without the need for paired stool samples. Using this approach, we highlight several commensal bacterial species that elicit elevated IgG responses in patients with inflammatory bowel disease (IBD) including taxa within the clades Collinsella, Bifidobacterium, Lachnospiraceae, and Ruminococcaceae. These and other taxa identified as translocating bacteria or targets of systemic immunity in IBD concomitantly exhibited heightened transcriptional activity and growth rates in IBD patient gut microbiomes. Our approach represents a complementary tool to illuminate interactions between the host and its gut microbiota and may provide an additional method to identify microbes linked to inflammatory disease.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Animals , Bacteria , Gastrointestinal Microbiome/physiology , Humans , Immunoglobulin G , Inflammatory Bowel Diseases/microbiology , Mice
3.
PLoS Pathog ; 18(6): e1010574, 2022 06.
Article in English | MEDLINE | ID: mdl-35709309

ABSTRACT

Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , HIV Antibodies , Macaca mulatta
4.
Science ; 365(6457): 1033-1036, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31488690

ABSTRACT

A study in nonhuman primates reported that infusions of an antibody against α4ß7 integrin, in combination with antiretroviral therapy, showed consistent, durable control of simian immunodeficiency virus (SIV) in rhesus macaques. The antibody used has pleiotropic effects, so we set out to gain insight into the underlying mechanism by comparing this treatment to treatment with non-neutralizing monoclonal antibodies against the SIV envelope glycoprotein that only block α4ß7 binding to SIV Env but have no other host-directed effects. Similar to the initial study, we used an attenuated strain of SIV containing a stop codon in nef. The study used 30 macaques that all began antiretroviral therapy and then were divided into five groups to receive different antibody treatments. Unlike the published report, we found no sustained virologic control by these treatments in vivo.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Integrin alpha4/immunology , Integrin beta Chains/immunology , Simian Acquired Immunodeficiency Syndrome/therapy , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , DNA, Viral/blood , Gene Products, env/immunology , HIV Infections/therapy , Macaca mulatta , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus/physiology , T-Lymphocytes/immunology , Viral Load , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/immunology , Virus Replication
5.
PLoS Pathog ; 14(12): e1007395, 2018 12.
Article in English | MEDLINE | ID: mdl-30517201

ABSTRACT

Gene based delivery of immunoglobulins promises to safely and durably provide protective immunity to individuals at risk of acquiring infectious diseases such as HIV. We used a rhesus macaque animal model to optimize delivery of naturally-arising, autologous anti-SIV neutralizing antibodies expressed by Adeno-Associated Virus 8 (AAV8) vectors. Vectored transgene expression was confirmed by quantitation of target antibody abundance in serum and mucosal surfaces. We tested the expression achieved at varying doses and numbers of injections. Expression of the transgene reached a saturation at about 2 x 10(12) AAV8 genome copies (gc) per needle-injection, a physical limitation that may not scale clinically into human trials. In contrast, expression increased proportionately with the number of injections. In terms of anti-drug immunity, anti-vector antibody responses were universally strong, while those directed against the natural transgene mAb were detected in only 20% of animals. An anti-transgene antibody response was invariably associated with loss of detectable plasma expression of the antibody. Despite having atypical glycosylation profiles, transgenes derived from AAV-directed muscle cell expression retained full functional activity, including mucosal accumulation, in vitro neutralization, and protection against repeated limiting dose SIVsmE660 swarm challenge. Our findings demonstrate feasibility of a gene therapy-based passive immunization strategy against infectious disease, and illustrate the potential for the nonhuman primate model to inform clinical AAV-based approaches to passive immunization.


Subject(s)
Antibodies, Viral/administration & dosage , Genetic Therapy/methods , Immunization, Passive/methods , SAIDS Vaccines , Viral Envelope Proteins/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Dependovirus , Genetic Vectors , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus , Transgenes
7.
PLoS Pathog ; 12(4): e1005537, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27064278

ABSTRACT

The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-2(7312A). This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.


Subject(s)
Gene Products, env/immunology , HIV Antibodies/immunology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites , Epitopes/immunology , HIV Antibodies/isolation & purification , Humans , Neutralization Tests/methods
8.
J Clin Oncol ; 33(1): 74-82, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25403209

ABSTRACT

PURPOSE: Interleukin-15 (IL-15) has significant potential in cancer immunotherapy as an activator of antitumor CD8 T and natural killer (NK) cells. The primary objectives of this trial were to determine safety, adverse event profile, dose-limiting toxicity, and maximum-tolerated dose of recombinant human IL-15 (rhIL-15) administered as a daily intravenous bolus infusion for 12 consecutive days in patients with metastatic malignancy. PATIENTS AND METHODS: We performed a first in-human trial of Escherichia coli-produced rhIL-15. Bolus infusions of 3.0, 1.0, and 0.3 µg/kg per day of IL-15 were administered for 12 consecutive days to patients with metastatic malignant melanoma or metastatic renal cell cancer. RESULTS: Flow cytometry of peripheral blood lymphocytes revealed dramatic efflux of NK and memory CD8 T cells from the circulating blood within minutes of IL-15 administration, followed by influx and hyperproliferation yielding 10-fold expansions of NK cells that ultimately returned to baseline. Up to 50-fold increases of serum levels of multiple inflammatory cytokines were observed. Dose-limiting toxicities observed in patients receiving 3.0 and 1.0 µg/kg per day were grade 3 hypotension, thrombocytopenia, and elevations of ALT and AST, resulting in 0.3 µg/kg per day being determined the maximum-tolerated dose. Indications of activity included clearance of lung lesions in two patients. CONCLUSION: IL-15 could be safely administered to patients with metastatic malignancy. IL-15 administration markedly altered homeostasis of lymphocyte subsets in blood, with NK cells and γδ cells most dramatically affected, followed by CD8 memory T cells. To reduce toxicity and increase efficacy, alternative dosing strategies have been initiated, including continuous intravenous infusions and subcutaneous IL-15 administration.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Interleukin-15/therapeutic use , Killer Cells, Natural/drug effects , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Area Under Curve , CD4-Positive T-Lymphocytes/metabolism , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Fever/chemically induced , Humans , Infusions, Intravenous , Interleukin-15/adverse effects , Interleukin-15/genetics , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Male , Metabolic Clearance Rate , Middle Aged , Nausea/chemically induced , Neoplasm Metastasis , Neoplasms/immunology , Neoplasms/metabolism , Neutropenia/chemically induced , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/therapeutic use , Treatment Outcome , Young Adult
9.
Nature ; 505(7484): 502-8, 2014 Jan 23.
Article in English | MEDLINE | ID: mdl-24352234

ABSTRACT

A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.


Subject(s)
AIDS Vaccines/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Disease Susceptibility/immunology , Female , Founder Effect , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/chemistry , Humans , Immune Evasion/immunology , Macaca mulatta , Male , Molecular Sequence Data , Phylogeny , Risk , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/chemistry , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/physiology , env Gene Products, Human Immunodeficiency Virus/immunology
10.
Eur J Immunol ; 43(4): 939-48, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23436562

ABSTRACT

Protective immunity to Mycobacterium tuberculosis (Mtb) is commonly ascribed to a Th1 profile; however, the involvement of Th17 cells remains to be clarified. Here, we characterized Mtb-specific CD4(+) T cells in blood and bronchoalveolar lavages (BALs) from untreated subjects with either active tuberculosis disease (TB) or latent Mtb infection (LTBI), considered as prototypic models of uncontrolled or controlled infection, respectively. The production of IL-17A, IFN-γ, TNF-α, and IL-2 by Mtb-specific CD4(+) T cells was assessed both directly ex vivo and following in vitro antigen-specific T-cell expansion. Unlike for extracellular bacteria, Mtb-specific CD4(+) T-cell responses lacked immediate ex vivo IL-17A effector function in both LTBI and TB individuals. Furthermore, Mtb-specific Th17 cells were absent in BALs, while extracellular bacteria-specific Th17 cells were identified in gut biopsies of healthy individuals. Interestingly, only Mtb-specific CD4(+) T cells from 50% of LTBI but not from TB subjects acquired the ability to produce IL-17A following Mtb-specific T-cell expansion. Finally, IL-17A acquisition by Mtb-specific CD4(+) T cells correlated with the coexpression of CXCR3 and CCR6, currently associated to Th1 or Th17 profiles, respectively. Our data demonstrate that Mtb-specific Th17 cells are selectively undetectable in peripheral blood and BALs from TB patients.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Epitopes, T-Lymphocyte/immunology , Interleukin-17/biosynthesis , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Humans , Receptors, CCR6/metabolism , Receptors, CXCR3/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Tuberculosis/metabolism
11.
J Virol ; 86(11): 6279-85, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491454

ABSTRACT

Adenovirus serotype 5 (Ad5) vectors and specific neutralizing antibodies (NAbs) generate immune complexes (ICs) which are potent inducers of dendritic cell (DC) maturation. Here we show that ICs generated with rare Ad vector serotypes, such as Ad26 and Ad35, which are lead candidates in HIV vaccine development, are poor inducers of DC maturation and that their potency in inducing DC maturation strongly correlated with the number of Toll-like receptor 9 (TLR9)-agonist motifs present in the Ad vector's genome. In addition, we showed that antihexon but not antifiber antibodies are responsible for the induction of Ad IC-mediated DC maturation.


Subject(s)
Adenoviruses, Human/genetics , Adenoviruses, Human/immunology , Antigen-Antibody Complex , Dendritic Cells/immunology , Dendritic Cells/virology , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/immunology , Amino Acid Motifs , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Viral Proteins/genetics
13.
J Virol ; 85(19): 9854-62, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21775454

ABSTRACT

In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared it with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/ NYVAC-C vaccine regimen. Smallpox-specific CD4 T-cell responses were present in the blood of 52% of the subjects studied, while smallpox-specific CD8 T cells were rarely detected (12%). With one exception, smallpox-specific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed α4ß7 integrins and the HIV coreceptor CCR5. These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and the depletion of CD4 T cells.


Subject(s)
AIDS Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Intestinal Mucosa/immunology , Smallpox Vaccine/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , AIDS Vaccines/administration & dosage , Adult , Blood/immunology , Humans , Middle Aged , Smallpox Vaccine/administration & dosage , Vaccination/methods , Vaccines, DNA/administration & dosage , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...