Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Sci Total Environ ; 927: 172190, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575025

ABSTRACT

Identification of methods for the standardized assessment of bacterial pathogens and antimicrobial resistance (AMR) in environmental water can improve the quality of monitoring and data collected, support global surveillance efforts, and enhance the understanding of environmental water sources. We conducted a systematic review to assemble and synthesize available literature that identified methods for assessment of prevalence and abundance of bacterial fecal indicators and pathogens in water for the purposes of monitoring bacterial pathogens and AMR. After screening for quality, 175 unique publications were identified from 15 databases, and data were extracted for analysis. This review identifies the most common and robust methods, and media used to isolate target organisms from surface water sources, summarizes methodological trends, and recognizes knowledge gaps. The information presented in this review will be useful when establishing standardized methods for monitoring bacterial pathogens and AMR in water in the United States and globally.


Subject(s)
Enterococcus , Environmental Monitoring , Escherichia coli , Salmonella , Water Microbiology , Enterococcus/isolation & purification , Salmonella/isolation & purification , Environmental Monitoring/methods , Escherichia coli/isolation & purification
2.
Foodborne Pathog Dis ; 20(8): 334-342, 2023 08.
Article in English | MEDLINE | ID: mdl-37405734

ABSTRACT

The objective was to investigate the influence of cattle origin and region of finishing on the prevalence of Salmonella, Escherichia coli O157:H7, and select antimicrobial resistance in E. coli populations. Yearling heifers (n = 190) were utilized in a 2 × 2 factorial arrangement. After determining fecal Salmonella prevalence, heifers were sorted into one of four treatments: heifers originating from South Dakota (SD) and finished in SD (SD-SD); heifers originating from SD and finished in Texas (SD-TX); heifers originating from TX and finished in SD (TX-SD); and heifers originating from TX and finished in TX (TX-TX). Fecal, pen, and water scum line samples were collected longitudinally throughout the study; hide swab and subiliac lymph node (SLN) samples were collected at study end. A treatment × time interaction was observed (p ≤ 0.01) for fecal Salmonella prevalence, with prevalence being greatest for TX-TX and TX-SD heifers before transport. From day (d) 14 through study end, prevalence was greatest for TX-TX and SD-TX heifers compared with SD-SD and TX-SD heifers. Salmonella prevalence on hides were greater (p ≤ 0.01) for heifers finished in TX compared with SD. Salmonella prevalence in SLN tended (p = 0.06) to be greater in TX-TX and SD-TX heifers compared with TX-SD and SD-SD. Fecal E. coli O157:H7 prevalence had a treatment × time interaction (p = 0.04), with SD-TX prevalence being greater than TX-SD on d 56 and SD-SD and TX-TX being intermediate. A treatment × time interaction was observed for fecal trimethoprim-sulfamethoxazole-resistant and cefotaxime-resistant E. coli O157:H7 prevalence (p ≤ 0.01). Overall, these data suggest that the region of finishing influences pathogenic bacterial shedding patterns, with the initial 14 d after feedlot arrival being critical for pathogen carriage.


Subject(s)
Anti-Infective Agents , Cattle Diseases , Escherichia coli Infections , Escherichia coli O157 , Animals , Cattle , Female , Prevalence , Incidence , Feces/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Texas , Salmonella , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Colony Count, Microbial
3.
Foodborne Pathog Dis ; 20(7): 252-260, 2023 07.
Article in English | MEDLINE | ID: mdl-37384919

ABSTRACT

Multidrug resistant (MDR) Escherichia coli threaten the preservation of antimicrobials to treat infections in humans and livestock. Thus, it is important to understand where antimicrobial-resistant E. coli persist and factors that contribute to its their development. Crossbred cattle (n = 249; body weight = 244 kg ±25 kg standard deviation) were blocked by arrival date and assigned metaphylactic antimicrobial treatments of sterile saline control, tulathromycin (TUL), ceftiofur, or florfenicol at random. Trimethoprim-sulfamethoxazole (COTR) and third-generation cephalosporin (CTXR)-resistant E. coli were isolated from fecal samples on days 0, 28, 56, 112, 182, and study END (day 252 for block 1 and day 242 for block 2). Then, susceptibility testing was conducted on all confirmed isolates. MDR was detected in both COTR and CTXR E. coli isolates. In COTR isolates, the number of antimicrobials each isolate was resistant to and the minimum inhibitory concentration (MIC) for amoxicillin-clavulanic acid, ceftriaxone, and gentamicin was greatest on day 28 compared with all other days (p ≤ 0.04). Similarly, chloramphenicol MIC was greater on day 28 than on day 0 (p < 0.01). Overall, sulfisoxazole MIC was less for TUL than all other treatments (p ≤ 0.02), and trimethoprim-sulfamethoxazole MIC was greater for TUL than all other treatments (p ≤ 0.03). Finally, there was no effect of treatment, day, or treatment × day for tetracycline or meropenem MIC (p ≥ 0.07). In CTXR isolates, there was an effect of day for all antimicrobials tested except ampicillin and meropenem (p ≤ 0.06). In conclusion, administering a metaphylactic antimicrobial at feedlot arrival did influence the susceptibility of COTR and CTXR E. coli. However, MDR E. coli are widely distributed, and the MIC for most antimicrobials was not different from the initial value upon completion of the feeding period.


Subject(s)
Escherichia coli Infections , Escherichia coli , Animals , Cattle , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/drug therapy , Escherichia coli Infections/veterinary , Meropenem/pharmacology , Meropenem/therapeutic use , Microbial Sensitivity Tests , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Male
4.
Front Vet Sci ; 10: 1303984, 2023.
Article in English | MEDLINE | ID: mdl-38274656

ABSTRACT

As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.

5.
Transl Anim Sci ; 6(4): txac140, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36415567

ABSTRACT

Bovine respiratory disease (BRD) is the primary animal health concern facing feedlot producers. Many antimicrobial mitigation strategies are available, but few studies have compared feedlot performance during both the receiving and finishing periods following application of different antimicrobials used as metaphylaxis at arrival. The objective of this study was to compare antimicrobial metaphylaxis methods on clinical health and growth performance across both the receiving and finishing periods. A total of 238 multiple-sourced steers in two source blocks were used in a generalized complete block design. The four treatments included: 1) a negative control, 5 mL of sterile saline injected subcutaneously (CON); 2) subcutaneous administration of florfenicol at 40 mg/kg of BW (NUF); 3) subcutaneous administration of ceftiofur in the posterior aspect of the ear at 6.6 mg/kg of BW (EXC); and 4) subcutaneous administration of tulathromycin at 2.5 mg/kg of BW (DRA). The morbidity rate for the first treatment of BRD was decreased for the DRA and EXC treatments compared to CON and NUF (P < 0.01). Additionally, average daily gain (ADG), dry matter intake (DMI), and gain-to-feed (G:F) were greater (P ≤ 0.02) in the DRA treatment during the receiving period compared to all other treatments. The ADG was also greater (P < 0.05) for EXC than the CON treatment throughout the finishing period. Nonetheless, other growth performance variables did not differ among metaphylactic treatments during the finishing period (P ≥ 0.14). Likewise, no differences in carcass characteristics or liver abscess score were observed (P ≥ 0.18). All complete blood count (CBC) variables were affected by day (P ≤ 0.01) except mean corpuscular hemoglobin concentration (P = 0.29). Treatment × time interactions were observed for platelet count, white blood cell (WBC) count, monocyte count and percentage, and lymphocyte percentage (P ≤ 0.03). However, there were no observed hematological variables that differed among treatment (P ≥ 0.10). The results indicate that some commercially available antimicrobials labeled for metaphylactic use are more efficacious than others in decreasing morbidity rate.

6.
J Appl Microbiol ; 133(3): 1940-1955, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35766106

ABSTRACT

AIMS: Our objective was to determine how injectable antimicrobials affected populations of Salmonella enterica, Escherichia coli and Enterococcus spp. in feedlot cattle. METHODS AND RESULTS: Two arrival date blocks of high-risk crossbred beef cattle (n = 249; mean BW = 244 kg) were randomly assigned one of four antimicrobial treatments administered on day 0: sterile saline control (CON), tulathromycin (TUL), ceftiofur (CEF) or florfenicol (FLR). Faecal samples were collected on days 0, 28, 56, 112, 182 and study end (day 252 for block 1 and day 242 for block 2). Hide swabs and subiliac lymph nodes were collected the day before and the day of harvest. Samples were cultured for antimicrobial-resistant Salmonella, Escherichia coli and Enterococcus spp. The effect of treatment varied by day across all targeted bacterial populations (p ≤ 0.01) except total E. coli. Total E. coli counts were greatest on days 112, 182 and study end (p ≤ 0.01). Tulathromycin resulted in greater counts and prevalence of Salmonella from faeces than CON at study end (p ≤ 0.01). Tulathromycin and CEF yielded greater Salmonella hide prevalence and greater counts of 128ERYR E. coli at study end than CON (p ≤ 0.01). No faecal Salmonella resistant to tetracyclines or third-generation cephalosporins were detected. Ceftiofur was associated with greater counts of 8ERYR Enterococcus spp. at study end (p ≤ 0.03). By the day before harvest, antimicrobial use did not increase prevalence or counts for all other bacterial populations compared with CON (p ≥ 0.13). CONCLUSIONS: Antimicrobial resistance (AMR) in feedlot cattle is not caused solely by using a metaphylactic antimicrobial on arrival, but more likely a multitude of environmental and management factors.


Subject(s)
Anti-Infective Agents , Cattle Diseases , Escherichia coli Infections , Salmonella enterica , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Cattle , Cattle Diseases/microbiology , Drug Resistance, Bacterial , Enterococcus , Escherichia coli , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Feces/microbiology , Salmonella
7.
J Anim Sci ; 100(4)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363309

ABSTRACT

Energy demands during lactation greatly influence sow body condition and piglet performance. We hypothesized that primiparous sows or sows with reduced body condition would produce piglets with reduced growth and delayed sexual maturation. Eight weekly farrowing seasons were used to evaluate sow body condition (post-farrowing, PF and weaning, WN) and piglet growth from 157 dams. Body condition was measured at PF and WN using sow calipers (last rib and hip) and 10th rib ultrasound. Sows were categorized as thin, moderate, or fat by caliper (PF or WN). Individual pig weights were recorded on approximately 1, 10, WN, 45, 100, and 145 d of age. At 100 and 145 d of age, 10th-rib backfat and loin eye area were measured on 567 pigs and first estrus was monitored in 176 gilts reserved for breeding selection beginning at approximately 170 d of age. Sows had similar (P > 0.10) PF last rib caliper measurements but at WN, first parity sows had the smallest caliper measurements compared to other parities (P < 0.05). Parities 1, 2, and 3 sows had similar (P > 0.10) loin eye area at PF; however, at WN first parity sows had the smallest loin eye area (P < 0.05; 38.2 ± 0.63 cm2). Parity 1 sows had the greatest (P < 0.05) reduction of backfat and loin eye area over the lactation period (-2.9 ± 0.31 mm and -2.6 ± 0.49 cm2, respectively). At 1 d of age and WN, piglets from first parity sows weighed the least (P < 0.05) but were the heaviest (P < 0.05) at 100 and 145 d of age. Pigs from first parity litters had larger (P < 0.05) loin eye area at 100 and 145 d of age and greater backfat (P < 0.05) at 145 d of age. Fat sows at WN (last rib or hip) had the lightest (P < 0.05) piglets at 10 d of age and WN. However, at 45 d of age, piglets from fat sows (last rib or hip) were heavier (P < 0.05) than piglets from moderate and thin sows. Tenth rib backfat at 100 and 145 d of age tended (P < 0.10) to be less in pigs reared by thin sows (PF and WN hip). Tenth rib loin eye area was similar among pigs reared by fat, moderate, or thin sows. Gilts developed in litters from fourth parity sows had (P < 0.05) delayed age at puberty in contrast to gilts from first or third parity sows (200.9 ± 4.96 d vs. 189.0 ± 2.29 d and 187.5 ± 2.84 d, respectively). Although progeny body weights were typically less from first parity dams through 45 d of age, these progeny were similar or heavier at 100 and 145 d of age in contrast to progeny from other parities. Furthermore, gilt progeny from first parity dams did not have delayed pubertal attainment.


Young female swine have a greater challenge successfully producing and raising a litter of piglets as they are still maturing themselves and nursing is an extremely energy demanding event. Piglet growth during the nursing phase can have extended impact on growth and development later in life. Piglets raised by young first-time mothers were smaller at birth and weaning but grew to similar weight and body composition later in life as their contemporaries raised by older more mature mothers. Young female pigs raised by first-time mothers had similar or better sexual maturity than counterparts raised by mature mothers. These findings indicate that piglets reared by first time mothering dams will not have detrimental effects on maturity and reproductive parameters. Producers can confidently select females that were reared by first-time mothers for the breeding herd without sacrificing quality.


Subject(s)
Lactation , Sexual Maturation , Animals , Female , Parity , Pregnancy , Sus scrofa , Swine , Weaning
8.
BMC Genomics ; 23(1): 275, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35392797

ABSTRACT

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing. RESULTS: Over 96% of the strains fell into four phylogenetically distinct clades. Clade membership was associated with multiple factors including stx composition and the alleles of a well-characterized polymorphism (tir 255 T > A). Small plasmids (2.7 to 40 kb) were found to be primarily clade specific. Within each clade, chromosomal rearrangements were observed along with a core phageome and clade specific phages. Across both core and mobile elements of the genome, multiple SNP alleles were in complete linkage disequilibrium across all strains within specific clades. Clade evolutionary rates varied between 0.9 and 2.8 SNP/genome/year with two tir A allele clades having the lowest evolutionary rates. Investigation into possible causes of the differing rates was not conclusive but revealed a synonymous based mutation in the DNA polymerase III of the fastest evolving clade. Phylogenetic trees generated through our bioinformatic pipeline versus the NCBI's pathogen detection project were similar, with the two tir A allele clades matching individual NCBI SNP clusters, and the two tir T allele clades assigned to multiple closely-related SNP clusters. CONCLUSIONS: In one ecological niche, a diverse STEC O157:H7 population exhibited different rates of evolution that associated with SNP alleles in linkage disequilibrium in the core genome and mobile elements, including tir 255 T > A.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Alleles , Animals , Cattle , Ecosystem , Escherichia coli Infections/epidemiology , Escherichia coli O157/genetics , Phylogeny , Retrospective Studies
9.
J Anim Sci ; 100(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35106579

ABSTRACT

Microbiome studies in animal science using 16S rRNA gene sequencing have become increasingly common in recent years as sequencing costs continue to fall and bioinformatic tools become more powerful and user-friendly. The combination of molecular biology, microbiology, microbial ecology, computer science, and bioinformatics-in addition to the traditional considerations when conducting an animal science study-makes microbiome studies sometimes intimidating due to the intersection of different fields. The objective of this review is to serve as a jumping-off point for those animal scientists less familiar with 16S rRNA gene sequencing and analyses and to bring up common issues and concerns that arise when planning an animal microbiome study from design through analysis. This review includes an overview of 16S rRNA gene sequencing, its advantages, and its limitations; experimental design considerations such as study design, sample size, sample pooling, and sample locations; wet lab considerations such as field handing, microbial cell lysis, low biomass samples, library preparation, and sequencing controls; and computational considerations such as identification of contamination, accounting for uneven sequencing depth, constructing diversity metrics, assigning taxonomy, differential abundance testing, and, finally, data availability. In addition to general considerations, we highlight some special considerations by species and sample type.


Subject(s)
Microbiota , Animals , Genes, rRNA , High-Throughput Nucleotide Sequencing/veterinary , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/veterinary
10.
Sci Total Environ ; 817: 152611, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34995584

ABSTRACT

The impacts of management-intensive grazing (MIG) of cattle on concentrations of total Escherichia coli, total suspended solids (TSS), and nitrate-nitrite nitrogen (NO3 + NO2-N), and occurrence of E. coli O157:H7 and selected antibiotic resistance genes (ARGs) in stream water and/or sediments were evaluated. Cattle were grazed for two-week periods in May in each of three years. Overall, grazing increased total E. coli in downstream water by 0.89 log10 MPN/100 mL (p < 0.0001), and downstream total E. coli concentrations were higher than upstream over all sampling intervals. Downstream TSS levels also increased (p ≤ 0.0294) during grazing. In contrast, there was a main effect of treatment for downstream NO3 + NO2-N to be lower than upstream (3.59 versus 3.70 mg/L; p = 0.0323). Overwintering mallard ducks increased total E. coli and TSS concentrations in January and February (p < 0.05). For precipitation events during the 24 h before sampling, each increase of 1.00 cm of rainfall increased total E. coli by 0.49 log10 MPN/100 mL (p = 0.0005). In contrast, there was no association of previous 24 h precipitation volume on TSS (p = 0.1540), and there was a negative linear effect on NO3 + NO2-N (p = 0.0002). E. coli O157:H7 prevalence was low, but the pathogen was detected downstream up to 2½ months after grazing. Examination of ARGs sul1, ermB, blactx-m-32, and intI1 identified the need for additional research to understand the impact of grazing on the ecology of these resistance determinants in pasture-based cattle production. While E. coli remained higher in downstream water compared to upstream, MIG may reduce the magnitude of the downstream E. coli concentrations. Likewise, the MIG strategy may prevent large increases in TSS and NO3 + NO2-N concentrations during heavy rain events. Results indicate that MIG can limit the negative effects of cattle grazing on stream water quality.


Subject(s)
Escherichia coli O157 , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Drug Resistance, Microbial/genetics , Escherichia coli O157/genetics , Feces
11.
Transl Anim Sci ; 5(4): txab219, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34909604

ABSTRACT

The identification of an inexpensive, indirect measure of feed efficiency in swine could be a useful tool to help identify animals with improved phenotypes to supplement expensive phenotypes including individual feed intakes. The purpose of this study was to determine whether hematology parameters in pigs at the beginning and end of a feed efficiency study, or changes in those values over the study, were associated with average daily gain (ADG), average daily feed intake (ADFI), or gain-to-feed (G:F). Whole blood samples were taken at days 0 and 42 from pigs (n = 178) that were monitored for individual feed intakes and body weight gain during a 6-week study. Blood samples were analyzed for blood cell parameters including white blood cell (WBC), neutrophil, lymphocyte, monocyte, eosinophil and basophil counts, red blood cell (RBC) counts, hemoglobin, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC), platelet count, and mean platelet volume (MPV). Feed efficiency parameters were predicted using an ANOVA model including fixed effects of farrowing group and pen (sex constant) and individual hematology parameters at day 0, day 42 or their change as covariates. At day 0, platelet count was positively associated with ADFI (P < 0.05) and negatively associated with G:F (P < 0.1), and lymphocyte count was positively associated with ADFI (P < 0.05). At day 42, neutrophil, RBC counts, hemoglobin and hematocrit were associated with ADFI (P < 10-3). Over the course of the study, changes in RBC measurements including RBC, hemoglobin, MCV, MCH, and MCHC (P < 10-4) which may improve oxygen carrying capacity, were associated with ADG and ADFI. The change in hematocrit over the course of the study was the only parameter that was associated with all three measures of feed efficiency (P < 0.05). Changes in RBC parameters, especially hematocrit, may be useful measurements to supplement feed efficiency phenotypes in swine.

12.
BMC Genom Data ; 22(1): 25, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34376140

ABSTRACT

BACKGROUND: Porcine milk is a complex fluid, containing a myriad of immunological, biochemical, and cellular components, made to satisfy the nutritional requirements of the neonate. Whole milk contains many different cell types, including mammary epithelial cells, neutrophils, macrophages, and lymphocytes, as well nanoparticles, such as milk exosomes. To-date, only a limited number of livestock transcriptomic studies have reported sequencing of milk. Moreover, those studies focused only on sequencing somatic cells as a proxy for the mammary gland with the goal of investigating differences in the lactation process. Recent studies have indicated that RNA originating from multiple cell types present in milk can withstand harsh environments, such as the digestive system, and transmit regulatory molecules from maternal to neonate. Transcriptomic profiling of porcine whole milk, which is reflective of the combined cell populations, could help elucidate these mechanisms. To this end, total RNA from colostrum and mature milk samples were sequenced from 65 sows at differing parities. A stringent bioinformatic pipeline was used to identify and characterize 70,841 transcripts. RESULTS: The 70,841 identified transcripts included 42,733 previously annotated transcripts and 28,108 novel transcripts. Differential gene expression analysis was conducted using a generalized linear model coupled with the Lancaster method for P-value aggregation across transcripts. In total, 1667 differentially expressed genes (DEG) were identified for the milk type main effect, and 33 DEG were identified for the milk type x parity interaction. Several gene ontology (GO) terms related to immune response were significant for the milk type main effect, supporting the well-known fact that immunoglobulins and immune cells are transferred to the neonate via colostrum. CONCLUSIONS: This is the first study to perform global transcriptome analysis from whole milk samples in sows from different parities. Our results provide important information and insight into synthesis of milk proteins and innate immunity and potential targets for future improvement of swine lactation and piglet development.


Subject(s)
Colostrum , Gene Expression Profiling , Milk , Parity , Animals , Female , Lactation , Pregnancy , RNA , Swine , Transcriptome
13.
Access Microbiol ; 3(1): acmi000180, 2021.
Article in English | MEDLINE | ID: mdl-33997611

ABSTRACT

Methane produced by cattle is one of the contributors of anthropogenic greenhouse gas. Methods to lessen methane emissions from cattle have been met with varying success; thus establishing consistent methods for decreasing methane production are imperative. Ferric iron may possibly act to decrease methane by acting as an alternative electron acceptor. The objective of this study was to assess the effect of ferric citrate on the rumen bacterial and archaeal communities and its impact on methane production. In this study, eight steers were used in a repeated Latin square design with 0, 250, 500 or 750 mg Fe/kg DM of ferric iron (as ferric citrate) in four different periods. Each period consisted of a 16 day adaptation period and 5 day sampling period. During each sampling period, methane production was measured, and rumen content was collected for bacterial and archaeal community analyses. Normally distributed data were analysed using a mixed model ANOVA using the GLIMMIX procedure of SAS, and non-normally distributed data were analysed in the same manner following ranking. Ferric citrate did not have any effect on bacterial community composition, methanogenic archaea nor methane production (P>0.05). Ferric citrate may not be a viable option to observe a ruminal response for decreases in enteric methane production.

14.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33170221

ABSTRACT

Abscess is the highest cause of liver condemnation and is estimated to cost the beef industry US$64 million annually. Fusobacterium necrophorum, commonly found in the bovine rumen, is the primary bacteria associated with liver abscess in cattle. Theoretically, damage to the rumen wall allows F. necrophorum to invade the bloodstream and colonize the liver. The objective of this study was to determine the changes in gene expression in the rumen epithelium and microbial populations adherent to the rumen epithelium and in the rumen contents of beef cattle with liver abscesses compared with those with no liver abscesses. Rumen epithelial tissue and rumen content were collected from 31 steers and heifers with liver abscesses and 30 animals with no liver abscesses. Ribonucleic acid (RNA) sequencing was performed on the rumen epithelium, and a total of 221 genes were identified as differentially expressed in the animals with liver abscesses compared with animals with no abscesses, after removal of genes that were identified as a result of interaction with sex. The nuclear factor kappa-light-chain enhancer of activated B cells signaling and interferon signaling pathways were significantly enriched in the differentially expressed gene (DEG) set. The majority of the genes in these pathways were downregulated in animals with liver abscesses. In addition, RNA translation and protein processing genes were also downregulated, suggesting that protein synthesis may be compromised in animals with liver abscesses. The rumen content bacterial communities were significantly different from the rumen wall epimural bacterial communities. Permutational multivariate analysis of variance (PERMANOVA) analysis did not identify global differences in the microbiome of the rumen contents but did identify differences in the epimural bacterial communities on the rumen wall of animals without and with liver abscesses. In addition, associations between DEG and specific bacterial amplicon sequence variants of epimural bacteria were observed. The DEG and bacterial profile on the rumen papillae identified in this study may serve as a method to monitor animals with existing liver abscesses or to predict those that are more likely to develop liver abscesses.


Subject(s)
Liver Abscess , Microbiota , Animals , Cattle , Epithelium , Female , Liver Abscess/veterinary , Rumen , Transcriptome
15.
Sci Rep ; 10(1): 15101, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934296

ABSTRACT

In light of recent host-microbial association studies, a consensus is evolving that species composition of the gastrointestinal microbiota is a polygenic trait governed by interactions between host genetic factors and the environment. Here, we investigated the effect of host genetic factors in shaping the bacterial species composition in the rumen by performing a genome-wide association study. Using a common set of 61,974 single-nucleotide polymorphisms found in cattle genomes (n = 586) and corresponding rumen bacterial community composition, we identified operational taxonomic units (OTUs), Families and Phyla with high heritability. The top associations (1-Mb windows) were located on 7 chromosomes. These regions were associated with the rumen microbiota in multiple ways; some (chromosome 19; position 3.0-4.0 Mb) are associated with closely related taxa (Prevotellaceae, Paraprevotellaceae, and RF16), some (chromosome 27; position 3.0-4.0 Mb) are associated with distantly related taxa (Prevotellaceae, Fibrobacteraceae, RF16, RFP12, S24-7, Lentisphaerae, and Tenericutes) and others (chromosome 23; position 0.0-1.0) associated with both related and unrelated taxa. The annotated genes associated with identified genomic regions suggest the associations observed are directed toward selective absorption of volatile fatty acids from the rumen to increase energy availability to the host. This study demonstrates that host genetics affects rumen bacterial community composition.


Subject(s)
Bacteria/genetics , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Rumen/microbiology , Animal Feed/microbiology , Animals , Cattle , Fatty Acids, Volatile/genetics , Genome-Wide Association Study
16.
J Anim Sci ; 98(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31930312

ABSTRACT

We hypothesized cattle that differed in BW gain had different digestive tract microbiota. Two experiments were conducted. In both experiments, steers received a diet that consisted of 8.0% chopped alfalfa hay, 20% wet distillers grain with solubles, 67.75% dry-rolled corn, and 4.25% vitamin/mineral mix (including monensin) on a dry matter basis. Steers had ad libitum access to feed and water. In experiment 1, 144 steers (age = 310 ± 1.5 d; BW = 503 ± 37.2 kg) were individually fed for 105 d. Ruminal digesta samples were collected from eight steers with the greatest (1.96 ± 0.02 kg/d) and eight steers with the least ADG (1.57 ± 0.02 kg/d) that were within ±0.32 SD of the mean (10.1 ± 0.05 kg/d) dry matter. In experiment 2, 66 steers (age = 396 ± 1 d; BW = 456 ± 5 kg) were individually fed for 84 d. Rumen, duodenum, jejunum, ileum, cecum, and colon digesta samples were collected from eight steers with the greatest (2.39 ± 0.06 kg/d) and eight steers with the least ADG (1.85 ± 0.06 kg/d) that were within ±0.55 SD of the mean dry matter intake (11.9 ± 0.1 kg/d). In both studies, DNA was isolated and the V1 to V3 regions of the 16S rRNA gene were sequenced. Operational taxonomic units were classified using 0.03 dissimilarity and identified using the Greengenes 16S rRNA gene database. In experiment 1, there were no differences in the Chao1, Shannon, Simpson, and InvSimpson diversity indexes or the permutation multivariate analysis of variance (PERMANOVA; P = 0.57). The hierarchical test returned six clades as being differentially abundant between steer classifications (P < 0.05). In experiment 2, Chao1, Shannon, Simpson, and InvSimpson diversity indexes and PERMANOVA between steer classified as less or greater ADG did not differ (P > 0.05) for the rumen, duodenum, ileum, cecum, and colon. In the jejunum, there tended to be a difference in the Chao1 (P = 0.09) and Simpson diversity (P = 0.09) indexes between steer classifications, but there was no difference in the Shannon (P = 0.14) and InvSimpson (P = 0.14) diversity indexes. Classification groups for the jejunum differed (P = 0.006) in the PERMANOVA. The hierarchical dependence false discovery rate procedure returned 11 clades as being differentially abundant between steer classifications in the jejunum (P < 0.05). The majority of the OTU were in the Families Corynebacteriaceae and Coriobacteriaceae. This study suggests that intestinal differences in the microbiota of ruminants may be associated with animal performance.


Subject(s)
Animal Feed/analysis , Cattle/microbiology , Gastrointestinal Microbiome/physiology , Animals , Cattle/physiology , Diet/veterinary , Eating , Edible Grain , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Male , Minerals/metabolism , Rumen/metabolism , Rumen/microbiology , Vitamins/metabolism , Zea mays
17.
J Food Prot ; 82(8): 1300-1307, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31310171

ABSTRACT

Leafy greens are leading vehicles for Escherichia coli O157:H7 foodborne illness. Pest flies can harbor this pathogen and may disseminate it to produce. We determined the occurrence of E. coli O157:H7-positive flies in leafy greens planted up to 180 m from a cattle feedlot and assessed their relative risk to transmit this pathogen to leafy greens. The primary fly groups captured on sticky traps at the feedlot and leafy greens plots included house flies (Musca domestica L.), face flies (Musca autumnalis L.), stable flies (Stomoxys calcitrans L.), flesh flies (family Sarcophagidae), and blow flies (family Calliphoridae). E. coli O157:H7 carriage rates of house, face, flesh, and blow flies were similar (P > 0.05), ranging from 22.3 to 29.0 flies per 1,000 flies. In contrast, the carriage rate of stable flies was lower at 1.1 flies per 1,000 flies (P < 0.05). Differences in carriage rates are likely due to the uses of fresh bovine feces and manure by these different pest fly groups. E. coli O157:H7 carriage rates of total flies did not differ (P > 0.05) by distance (ranging from 0 to 180 m) from the feedlot. Most fly isolates were the same predominant pulsed-field gel electrophoresis types found in feedlot surface manure and leafy greens, suggesting a possible role for flies in transmitting E. coli O157:H7 to the leafy greens. However, further research is needed to clarify this role and to determine set-back distances between cattle production facilities and produce crops that will reduce the risk for pathogen contamination by challenging mechanisms like flies.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Food Microbiology , Muscidae , Red Meat , Vegetables , Animals , Cattle , Colony Count, Microbial , Escherichia coli Infections/transmission , Escherichia coli O157/isolation & purification , Manure/microbiology , Muscidae/microbiology , Risk Assessment , Vegetables/microbiology
18.
J Anim Sci ; 96(3): 1045-1058, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29617864

ABSTRACT

The importance of the rumen microbiota on nutrient cycling to the animal is well recognized; however, our understanding of the influence of the rumen microbiome composition on feed efficiency is limited. The rumen microbiomes of two large animal cohorts (125 heifers and 122 steers) were characterized to identify specific bacterial members (operational taxonomic units [OTUs]) associated with feed efficiency traits (ADFI, ADG, and G:F) in beef cattle. The heifer and steer cohorts were fed a forage-based diet and a concentrate-based diet, respectively. A rumen sample was obtained from each animal via esophageal tubing and bacterial community composition was determined through 16S rRNA gene sequencing of the V4 region. Based on a regression approach that used individual performance measures, animals were classified into divergent feed efficiency groups. Within cohort, an extreme set of 16 animals from these divergent groups was selected as a discovery population to identify differentially abundant OTUs across the rumen bacterial communities. The remaining samples from each cohort were selected to perform forward stepwise regressions using the differentially abundant OTUs as explanatory variables to distinguish predictive OTUs for the feed efficiency traits and to quantify the OTUs collective impact on feed efficiency phenotypes. OTUs belonging to the families Prevotellaceae and Victivallaceae were present across models for heifers, whereas OTUs belonging to the families Prevotellaceae and Lachnospiraceae were present across models for steers. Within the heifer cohort, models explained 19.3%, 25.3%, and 19.8% of the variation for ADFI, ADG, and G:F, respectively. Within the steer cohort, models explained 27.7%, 32.5%, and 26.9% of the variation for ADFI, ADG, and G:F, respectively. Overall, this study suggests a substantial role of the rumen microbiome on feed efficiency responses.


Subject(s)
Animal Feed/analysis , Bacteria/classification , Cattle/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Cattle/physiology , Cluster Analysis , Cohort Studies , Diet/veterinary , Female , Linear Models , Male , Phenotype , RNA, Ribosomal, 16S/genetics , Rumen/microbiology
20.
J Environ Qual ; 46(4): 722-732, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783776

ABSTRACT

Pine ( spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn ( L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this study were to determine if the addition of pine wood chips to laboratory-scaled bedded packs containing corn stover (i) reduced odorous VOC emissions; (ii) reduced total ; and (iii) changed the nutrient composition of the resulting manure-bedded packs. Bedding treatments included 0, 10, 20, 30, 40, 60, 80, and 100% pine chips, with the balance being corn stover. Four bedded packs for each mixture were maintained for 42 d ( = 4 observations per bedding material). The production of total sulfur compounds increased significantly when 100% pine chips were used (44.72 ng L) compared with bedding mixture containing corn stover (18.0-24.56 ng L). The carbon-to-nitrogen ratio exceeded the ideal ratio of 24:1 for the optimum activity of soil microorganisms when ≥60% pine chips (25.3-27.5 ng L) were included in the mixture. The use of 100% pine chips as bedding increased sulfide concentration in the facility 1.8 to 2.4 times over the use of corn stover bedding. was not influenced by the addition of pine chips to the corn stover bedding material but did decrease as the bedded pack aged. Bedding material mixtures containing 30 to 60% pine and 40 to 70% corn stover may be the ideal combination to mitigate odors from livestock facilities using deep bedded systems.


Subject(s)
Escherichia coli/isolation & purification , Manure , Zea mays , Animals , Cattle , Housing, Animal , Nitrogen/analysis , Phosphorus/analysis , Red Meat , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...