Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Nat Prod ; 86(1): 182-190, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36580354

ABSTRACT

Previous chemical investigation of the Irish deep-sea soft coral Duva florida led to the identification of tuaimenal A (10), a new merosesquiterpene containing a highly substituted chromene core and modest cytotoxicity against cervical cancer. Further MS/MS and NMR-guided investigation of this octocoral has resulted in the isolation and characterization of seven additional tuaimenal analogs, B-H (1-7), as well as two known A-ring aromatized steroids (8, 9), and additional tuaimenal A (10). Tuaimenals B, F, and G (1, 5, 6), bearing an oxygen at the C5 position, as well as monocyclic tuaimenal H (7), show increased cervical cancer inhibition profiles in comparison to that of 10. Tuaimenal G further displayed potent, selective cytotoxicity with an EC50 value of 0.04 µM against the C33A cell line compared to the CaSki cell line (EC50 20 µM). These data reveal the anticancer properties of tuaimenal analogs and suggest unique antiproliferation mechanisms across these secondary metabolites.


Subject(s)
Anthozoa , Uterine Cervical Neoplasms , Animals , Humans , Female , Anthozoa/chemistry , Uterine Cervical Neoplasms/drug therapy , Tandem Mass Spectrometry , Florida , Cell Line, Tumor
2.
Cells ; 11(21)2022 11 03.
Article in English | MEDLINE | ID: mdl-36359884

ABSTRACT

Human topoisomerase 1B regulates the topological state of supercoiled DNA enabling all fundamental cell processes. This enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by nicking one DNA strand and forming a transient protein-DNA covalent complex. The interaction of human topoisomerase 1B and dimethylmyricacene, a compound prepared semisynthetically from myricanol extracted from Myrica cerifera root bark, was investigated using enzymatic activity assays and molecular docking procedures. Dimethylmyricacene was shown to inhibit both the cleavage and the religation steps of the enzymatic reaction, and cell viability of A-253, FaDu, MCF-7, HeLa and HCT-116 tumor cell lines.


Subject(s)
Camptothecin , DNA Topoisomerases, Type I , Humans , DNA Topoisomerases, Type I/genetics , DNA Topoisomerases, Type I/metabolism , Camptothecin/pharmacology , Molecular Docking Simulation , DNA/metabolism
3.
J Nat Prod ; 85(10): 2395-2398, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36122192

ABSTRACT

Four undescribed sesquiterpenoids, crannenols A-D (1-4), have been isolated from CHCl2 and MeOH extracts of the deep-sea bamboo coral Acanella arbuscula. The corals were collected from a submarine canyon on the edge of Ireland's Porcupine Bank via a remotely operated vehicle. The structure elucidation of these (Z,E)-α-farnesene derivatives was achieved using a combination of 1D and 2D NMR, electron impact (1, 2), and electrospray ionization (3, 4) mass spectrometry.


Subject(s)
Anthozoa , Sesquiterpenes , Animals , Anthozoa/chemistry , Sesquiterpenes/chemistry , Magnetic Resonance Spectroscopy
4.
J Enzyme Inhib Med Chem ; 37(1): 1404-1410, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35603503

ABSTRACT

Nature has been always a great source of possible lead compounds to develop new drugs against several diseases. Here we report the identification of a natural compound, membranoid G, derived from the Antarctic sponge Dendrilla antarctica displaying an in vitro inhibitory activity against human DNA topoisomerase 1B. The experiments indicate that membranoid G, when pre-incubated with the enzyme, strongly and irreversibly inhibits the relaxation of supercoiled DNA. This compound completely inhibits the cleavage step of the enzyme catalytic mechanism by preventing protein binding to the DNA. Membranoid G displays also a cytotoxic effect on tumour cell lines, suggesting its use as a possible lead compound to develop new anticancer drugs.


Subject(s)
Antineoplastic Agents , Neoplasms , Antarctic Regions , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , DNA/chemistry , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , Humans , Topoisomerase Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL