Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355799

ABSTRACT

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Subject(s)
Animals, Newborn , Embryo, Mammalian , Embryonic Development , Gastrula , Single-Cell Analysis , Time-Lapse Imaging , Animals , Female , Mice , Pregnancy , Animals, Newborn/embryology , Animals, Newborn/genetics , Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development/genetics , Gastrula/cytology , Gastrula/embryology , Gastrulation/genetics , Kidney/cytology , Kidney/embryology , Mesoderm/cytology , Mesoderm/enzymology , Neurons/cytology , Neurons/metabolism , Retina/cytology , Retina/embryology , Somites/cytology , Somites/embryology , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Organ Specificity/genetics
2.
bioRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873353

ABSTRACT

Following facial prominence fusion, anterior-posterior (A-P) elongation of the palate is a critical aspect of palatogenesis and integrated midfacial elongation. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation and periodic signaling center formation within the rugae growth zone (RGZ). However, the relationship between RGZ dynamics and the morphogenetic behavior of underlying palatal bone mesenchymal precursors has remained enigmatic. Our results indicate that cellular activity at the RGZ simultaneously drives rugae formation and elongation of the maxillary bone primordium within the anterior secondary palate, which more than doubles in length prior to palatal shelf fusion. The first formed palatal ruga, found just posterior to the RGZ, represents a consistent morphological boundary between anterior and posterior secondary palate bone precursors, being found at the future maxillary-palatine suture. These results suggest a model where changes in RGZ-driven A-P growth of the anterior secondary palate may produce interspecies and intraspecies differences in facial prognathism and differences in the proportional contribution of palatal segment-associated bones to total palate length. An ontogenetic comparison of three inbred mouse strains indicated that while RGZ-driven growth of the anterior secondary palate is critical for early midfacial outgrowth, subtle strain-specific bony contributions to adult palate length are not present until after this initial palatal growth period. This multifaceted illustration of normal midfacial growth dynamics confirms a one-to-one relationship between palatal segments and upper jaw bones during the earliest stages of palatal growth, which may serve as the basis for evolutionary change in upper jaw morphology. Additionally, identified mouse strain-specific differences in palatal segment elongation provide a useful foundation for understanding the impact of background genetic effects on facial morphogenesis.

3.
Mamm Genome ; 34(3): 453-463, 2023 09.
Article in English | MEDLINE | ID: mdl-37341808

ABSTRACT

The external ear develops from an organized convergence of ventrally migrating neural crest cells into the first and second branchial arches. Defects in external ear position are often symptomatic of complex syndromes such as Apert, Treacher-Collins, and Crouzon Syndrome. The low set ears (Lse) spontaneous mouse mutant is characterized by the dominant inheritance of a ventrally shifted external ear position and an abnormal external auditory meatus (EAM). We identified the causative mutation as a 148 Kb tandem duplication on Chromosome 7, which includes the entire coding sequences of Fgf3 and Fgf4. Duplications of FGF3 and FGF4 occur in 11q duplication syndrome in humans and are associated with craniofacial anomalies, among other features. Intercrosses of Lse-affected mice revealed perinatal lethality in homozygotes, and Lse/Lse embryos display additional phenotypes including polydactyly, abnormal eye morphology, and cleft secondary palate. The duplication results in increased Fgf3 and Fgf4 expression in the branchial arches and additional discrete domains in the developing embryo. This ectopic overexpression resulted in functional FGF signaling, demonstrated by increased Spry2 and Etv5 expression in overlapping domains of the developing arches. Finally, a genetic interaction between Fgf3/4 overexpression and Twist1, a regulator of skull suture development, resulted in perinatal lethality, cleft palate, and polydactyly in compound heterozygotes. These data indicate a role for Fgf3 and Fgf4 in external ear and palate development and provide a novel mouse model for further interrogation of the biological consequences of human FGF3/4 duplication.


Subject(s)
Fibroblast Growth Factors , Polydactyly , Animals , Mice , Humans , Fibroblast Growth Factors/genetics , Mutation , Disease Models, Animal , Fibroblast Growth Factor 3/genetics
4.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066300

ABSTRACT

The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.

5.
Nat Genet ; 54(3): 328-341, 2022 03.
Article in English | MEDLINE | ID: mdl-35288709

ABSTRACT

Mammalian embryogenesis is characterized by rapid cellular proliferation and diversification. Within a few weeks, a single-cell zygote gives rise to millions of cells expressing a panoply of molecular programs. Although intensively studied, a comprehensive delineation of the major cellular trajectories that comprise mammalian development in vivo remains elusive. Here, we set out to integrate several single-cell RNA-sequencing (scRNA-seq) datasets that collectively span mouse gastrulation and organogenesis, supplemented with new profiling of ~150,000 nuclei from approximately embryonic day 8.5 (E8.5) embryos staged in one-somite increments. Overall, we define cell states at each of 19 successive stages spanning E3.5 to E13.5 and heuristically connect them to their pseudoancestors and pseudodescendants. Although constructed through automated procedures, the resulting directed acyclic graph (TOME (trajectories of mammalian embryogenesis)) is largely consistent with our contemporary understanding of mammalian development. We leverage TOME to systematically nominate transcription factors (TFs) as candidate regulators of each cell type's specification, as well as 'cell-type homologs' across vertebrate evolution.


Subject(s)
Embryonic Development , Organogenesis , Animals , Embryo, Mammalian , Embryonic Development/genetics , Gastrulation/genetics , Mammals , Mice
6.
Cell Stem Cell ; 27(5): 765-783.e14, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32991838

ABSTRACT

Non-coding mutations at the far end of a large gene desert surrounding the SOX9 gene result in a human craniofacial disorder called Pierre Robin sequence (PRS). Leveraging a human stem cell differentiation model, we identify two clusters of enhancers within the PRS-associated region that regulate SOX9 expression during a restricted window of facial progenitor development at distances up to 1.45 Mb. Enhancers within the 1.45 Mb cluster exhibit highly synergistic activity that is dependent on the Coordinator motif. Using mouse models, we demonstrate that PRS phenotypic specificity arises from the convergence of two mechanisms: confinement of Sox9 dosage perturbation to developing facial structures through context-specific enhancer activity and heightened sensitivity of the lower jaw to Sox9 expression reduction. Overall, we characterize the longest-range human enhancers involved in congenital malformations, directly demonstrate that PRS is an enhanceropathy, and illustrate how small changes in gene expression can lead to morphological variation.


Subject(s)
Neural Crest , Pierre Robin Syndrome , Cell Differentiation , Humans , Mutation/genetics , Regulatory Sequences, Nucleic Acid , SOX9 Transcription Factor/genetics
7.
Development ; 147(18)2020 09 21.
Article in English | MEDLINE | ID: mdl-32958507

ABSTRACT

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Subject(s)
Dental Research/methods , Facial Bones/physiology , Skull/physiology , Animals , Databases, Factual , Humans , Reproducibility of Results , Research Personnel
8.
J Anat ; 233(2): 222-242, 2018 08.
Article in English | MEDLINE | ID: mdl-29797482

ABSTRACT

Orofacial clefting represents the most common craniofacial birth defect. Cleft lip with or without cleft palate (CL/P) is genetically distinct from cleft palate only (CPO). Numerous transcription factors (TFs) regulate normal development of the midface, comprising the premaxilla, maxilla and palatine bones, through control of basic cellular behaviors. Within the Pbx family of genes encoding Three Amino-acid Loop Extension (TALE) homeodomain-containing TFs, we previously established that in the mouse, Pbx1 plays a preeminent role in midfacial morphogenesis, and Pbx2 and Pbx3 execute collaborative functions in domains of coexpression. We also reported that Pbx1 loss from cephalic epithelial domains, on a Pbx2- or Pbx3-deficient background, results in CL/P via disruption of a regulatory network that controls apoptosis at the seam of frontonasal and maxillary process fusion. Conversely, Pbx1 loss in cranial neural crest cell (CNCC)-derived mesenchyme on a Pbx2-deficient background results in CPO, a phenotype not yet characterized. In this study, we provide in-depth analysis of PBX1 and PBX2 protein localization from early stages of midfacial morphogenesis throughout development of the secondary palate. We further establish CNCC-specific roles of PBX TFs and describe the developmental abnormalities resulting from their loss in the murine embryonic secondary palate. Additionally, we compare and contrast the phenotypes arising from PBX1 loss in CNCC with those caused by its loss in the epithelium and show that CNCC-specific Pbx1 deletion affects only later secondary palate morphogenesis. Moreover, CNCC mutants exhibit perturbed rostro-caudal organization and broadening of the midfacial complex. Proliferation defects are pronounced in CNCC mutants at gestational day (E)12.5, suggesting altered proliferation of mutant palatal progenitor cells, consistent with roles of PBX factors in maintaining progenitor cell state. Although the craniofacial skeletal abnormalities in CNCC mutants do not result from overt patterning defects, osteogenesis is delayed, underscoring a critical role of PBX factors in CNCC morphogenesis and differentiation. Overall, the characterization of tissue-specific Pbx loss-of-function mouse models with orofacial clefting establishes these strains as unique tools to further dissect the complexities of this congenital craniofacial malformation. This study closely links PBX TALE homeodomain proteins to the variation in maxillary shape and size that occurs in pathological settings and during evolution of midfacial morphology.


Subject(s)
Cranial Nerves/embryology , Homeodomain Proteins/physiology , Palate/embryology , Pre-B-Cell Leukemia Transcription Factor 1/physiology , Proto-Oncogene Proteins/physiology , Animals , Cleft Palate/genetics , Cranial Nerves/metabolism , Female , Mice , Mice, Transgenic , Palate/metabolism , Pregnancy
9.
Cell Rep ; 13(2): 337-49, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26411685

ABSTRACT

Expression of Pitx2 on the left side of the embryo patterns left-right (LR) organs including the dorsal mesentery (DM), whose asymmetric cell behavior directs gut looping. Despite the importance of organ laterality, chromatin-level regulation of Pitx2 remains undefined. Here, we show that genes immediately neighboring Pitx2 in chicken and mouse, including a long noncoding RNA (Pitx2 locus-asymmetric regulated RNA or Playrr), are expressed on the right side and repressed by Pitx2. CRISPR/Cas9 genome editing of Playrr, 3D fluorescent in situ hybridization (FISH), and variations of chromatin conformation capture (3C) demonstrate that mutual antagonism between Pitx2 and Playrr is coordinated by asymmetric chromatin interactions dependent on Pitx2 and CTCF. We demonstrate that transcriptional and morphological asymmetries driving gut looping are mirrored by chromatin architectural asymmetries at the Pitx2 locus. We propose a model whereby Pitx2 auto-regulation directs chromatin topology to coordinate LR transcription of this locus essential for LR organogenesis.


Subject(s)
Chromatin/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Intestinal Mucosa/metabolism , RNA, Long Noncoding/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Animals , Base Sequence , CCCTC-Binding Factor , Chick Embryo , Chromatin/chemistry , Genetic Loci , Intestines/embryology , Mice , Molecular Sequence Data , Morphogenesis , Repressor Proteins/genetics , Homeobox Protein PITX2
10.
Dev Cell ; 31(6): 690-706, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25482882

ABSTRACT

The dorsal mesentery (DM) is the major conduit for blood and lymphatic vessels in the gut. The mechanisms underlying their morphogenesis are challenging to study and remain unknown. Here we show that arteriogenesis in the DM begins during gut rotation and proceeds strictly on the left side, dependent on the Pitx2 target gene Cxcl12. Although competent Cxcr4-positive angioblasts are present on the right, they fail to form vessels and progressively emigrate. Surprisingly, gut lymphatics also initiate in the left DM and arise only after-and dependent on-arteriogenesis, implicating arteries as drivers of gut lymphangiogenesis. Our data begin to unravel the origin of two distinct vascular systems and demonstrate how early left-right molecular asymmetries are translated into organ-specific vascular patterns. We propose a dual origin of gut lymphangiogenesis in which prior arterial growth is required to initiate local lymphatics that only subsequently connect to the vascular system.


Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Intestines/embryology , Lymphatic System/embryology , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Arteries/embryology , Chemokine CXCL12/metabolism , Chickens , Green Fluorescent Proteins/metabolism , Lymphangiogenesis , Lymphatic Vessels/embryology , Mesentery , Mice , Mice, Transgenic , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Quail , Receptors, CXCR4/metabolism , Homeobox Protein PITX2
11.
Dev Cell ; 26(6): 629-44, 2013 Sep 30.
Article in English | MEDLINE | ID: mdl-24091014

ABSTRACT

A critical aspect of gut morphogenesis is initiation of a leftward tilt, and failure to do so leads to gut malrotation and volvulus. The direction of tilt is specified by asymmetric cell behaviors within the dorsal mesentery (DM), which suspends the gut tube, and is downstream of Pitx2, the key transcription factor responsible for the transfer of left-right (L-R) information from early gastrulation to morphogenesis. Although Pitx2 is a master regulator of L-R organ development, its cellular targets that drive asymmetric morphogenesis are not known. Using laser microdissection and targeted gene misexpression in the chicken DM, we show that Pitx2-specific effectors mediate Wnt signaling to activate the formin Daam2, a key Wnt effector and itself a Pitx2 target, linking actin dynamics to cadherin-based junctions to ultimately generate asymmetric cell behaviors. Our work highlights how integration of two conserved cascades may be the ultimate force through which Pitx2 sculpts L-R organs.


Subject(s)
Gastrulation , Homeodomain Proteins/metabolism , Intestines/embryology , Microfilament Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Wnt Signaling Pathway , rho GTP-Binding Proteins/metabolism , Actins/metabolism , Animals , Cadherins/metabolism , Chick Embryo , Homeodomain Proteins/genetics , Intestinal Mucosa/metabolism , Mesentery/embryology , Mesentery/metabolism , Mesoderm/metabolism , Mice , Microfilament Proteins/genetics , Transcription Factors/genetics , rho GTP-Binding Proteins/genetics , Homeobox Protein PITX2
13.
Dev Biol ; 336(1): 53-67, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19782673

ABSTRACT

Evolution of facial morphology arises from variation in the activity of developmental regulatory networks that guide the formation of specific craniofacial elements. Importantly, the acquisition of novel morphology must be integrated with a phylogenetically inherited developmental program. We have identified a unique region of the secondary palate associated with the periodic formation of rugae during the rostral outgrowth of the face. Rugae function as SHH signaling centers to pattern the elongating palatal shelves. We have found that a network of signaling genes and transcription factors is spatially organized relative to palatal rugae. Additionally, the first formed ruga is strategically positioned at the presumptive junction of the future hard and soft palate that defines anterior-posterior differences in regional growth, mesenchymal gene expression, and cell fate. We propose a molecular circuit integrating FGF and BMP signaling to control proliferation and differentiation during the sequential formation of rugae and inter-rugae domains in the palatal epithelium. The loss of p63 and Sostdc1 expression and failed rugae differentiation highlight that coordinated epithelial-mesenchymal signaling is lost in the Fgf10 mutant palate. Our results establish a genetic program that reiteratively organizes signaling domains to coordinate the growth of the secondary palate with the elongating midfacial complex.


Subject(s)
Fibroblast Growth Factor 10/genetics , Hedgehog Proteins/genetics , Palate/metabolism , Signal Transduction/genetics , Animals , Body Patterning/genetics , Body Patterning/physiology , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/physiology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Epithelium/metabolism , Female , Fibroblast Growth Factor 10/physiology , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Hedgehog Proteins/physiology , In Situ Hybridization , Male , Mesoderm/metabolism , Mice , Mice, Knockout , Models, Biological , Mutation , Palate/embryology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Time Factors
14.
BMC Dev Biol ; 9: 27, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19379485

ABSTRACT

BACKGROUND: The H6 homeobox genes Hmx1, Hmx2, and Hmx3 (also known as Nkx5-3; Nkx5-2 and Nkx5-1, respectively), compose a family within the NKL subclass of the ANTP class of homeobox genes. Hmx gene family expression is mostly limited to sensory organs, branchial (pharyngeal) arches, and the rostral part of the central nervous system. Targeted mutation of either Hmx2 or Hmx3 in mice disrupts the vestibular system. These tandemly duplicated genes have functional overlap as indicated by the loss of the entire vestibular system in double mutants. Mutants have not been described for Hmx1, the most divergent of the family. RESULTS: Dumbo (dmbo) is a semi-lethal mouse mutation that was recovered in a forward genetic mutagenesis screen. Mutants exhibit enlarged ear pinnae with a distinctive ventrolateral shift. Here, we report on the basis of this phenotype and other abnormalities in the mutant, and identify the causative mutation as being an allele of Hmx1. Examination of dumbo skulls revealed only subtle changes in cranial bone morphology, namely hyperplasia of the gonial bone and irregularities along the caudal border of the squamous temporal bone. Other nearby otic structures were unaffected. The semilethality of dmbo/dmbo mice was found to be ~40%, occured perinatally, and was associated with exencephaly. Surviving mutants of both sexes exhibited reduced body mass from ~3 days postpartum onwards. Most dumbo adults were microphthalmic. Recombinant animals and specific deletion-bearing mice were used to map the dumbo mutation to a 1.8 Mb region on Chromosome 5. DNA sequencing of genes in this region revealed a nonsense mutation in the first exon of H6 Homeobox 1 (Hmx1; also Nkx5-3). An independent spontaneous allele called misplaced ears (mpe) was also identified, confirming Hmx1 as the responsible mutant gene. CONCLUSION: The divergence of Hmx1 from its paralogs is reflected by different and diverse developmental roles exclusive of vestibular involvement. Additionally, these mutant Hmx1 alleles represent the first mouse models of a recently-discovered Oculo-Auricular syndrome caused by mutation of the orthologous human gene.


Subject(s)
Body Weight/genetics , Craniofacial Abnormalities/genetics , Mutation , Transcription Factors/genetics , Alleles , Animals , Animals, Newborn , Base Sequence , Chromosome Mapping , Chromosomes, Mammalian/genetics , DNA Mutational Analysis , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Eye Abnormalities/genetics , Female , Gene Expression Regulation, Developmental , Genotype , Hearing Tests , Homeodomain Proteins/adverse effects , Homeodomain Proteins/genetics , In Situ Hybridization , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Nerve Tissue Proteins/adverse effects , Nerve Tissue Proteins/genetics , Phenotype
15.
Mech Dev ; 124(9-10): 746-61, 2007.
Article in English | MEDLINE | ID: mdl-17693063

ABSTRACT

The formation of the palate involves the coordinated outgrowth, elevation and midline fusion of bilateral shelves leading to the separation of the oral and nasal cavities. Reciprocal signaling between adjacent fields of epithelial and mesenchymal cells directs palatal shelf growth and morphogenesis. Loss of function mutations in genes encoding FGF ligands and receptors have demonstrated a critical role for FGF signaling in mediating these epithelial-mesenchymal interactions. The Sprouty family of genes encode modulators of FGF signaling. We have established that mice carrying a deletion that removes the FGF signaling antagonist Spry2 have cleft palate. We show that excessive cell proliferation in the Spry2-deficient palate is accompanied by the abnormal progression of shape changes and movements required for medially directed shelf outgrowth and midline contact. Expression of the FGF responsive transcription factors Etv5, Msx1, and Barx1, as well as the morphogen Shh, is restricted to specific regions of the developing palate. We detected elevated and ectopic expression of these transcription factors and disorganized Shh expression in the Spry2-deficient palate. Mice carrying a targeted disruption of Spry2 fail to complement the craniofacial phenotype characterized in Spry2 deletion mice. Furthermore, a Spry2-BAC transgene rescues the palate defect. However, the BAC transgenic mouse lines express reduced levels of Spry2. The resulting hypomorphic phenotype demonstrates that palate development is Spry2 dosage sensitive. Our results demonstrate the importance of proper FGF signaling thresholds in regulation of epithelial-mesenchymal interactions and cellular responses necessary for coordinated morphogenesis of the face and palate.


Subject(s)
Body Patterning/genetics , Gene Dosage/physiology , Membrane Proteins/physiology , Palate/embryology , Adaptor Proteins, Signal Transducing , Animals , Cell Differentiation/genetics , Cell Movement/genetics , Cleft Palate/genetics , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/physiology , Gene Deletion , Gene Expression Regulation, Developmental , Hedgehog Proteins/biosynthesis , Hedgehog Proteins/deficiency , Hedgehog Proteins/genetics , Intracellular Signaling Peptides and Proteins , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Serine-Threonine Kinases , Signal Transduction/genetics
16.
Endocrinology ; 148(3): 1246-54, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17110422

ABSTRACT

Dlx3, a homeodomain transcription factor, is essential for placental development in the mouse. The Dlx3(-/-) mouse embryo dies at embryonic d 9.5-10 putatively due to placental failure. To develop a more comprehensive understanding of the gene profile regulated by Dlx3, microarray analysis was used to determine differences in gene expression within the placenta of Dlx3(+/+) and Dlx3(-/-) mice. Array analysis revealed differential expression of 401 genes, 33 genes in which signal to log ratio values of null/wild-type were lower than -0.5 or higher than 0.5. To corroborate these findings, quantitative real-time PCR was used to confirm differential expression for 11 genes, nine of which displayed reduced expression and two with enhanced expression in the Dlx3(-/-) mouse. Loss of Dlx3 resulted in a marked reduction (>60%) in mRNA expression of placental growth factor (Pgf), a member of the vascular endothelial growth factor family. Consistent with these results, Pgf secretion from placental explants tended to be reduced in the Dlx3(-/-) mice, compared with wild type. To investigate mechanisms of Dlx3 regulation of Pgf gene transcription, we cloned 5.2 kb of the Pgf 5' flanking sequence for use in reporter gene assays. Expression of the Pgf promoter luciferase reporter containing at least three Dlx3 binding sites was increased markedly by overexpression of Dlx3 supporting the conclusion that Dlx3 may have a direct effect on Pgf promoter activity. These studies provide a novel view of the transcriptome regulated by Dlx3 in mouse placenta. Dlx3 is specifically required for full expression and secretion of Pgf in vivo. Moreover, in vitro studies support the conclusion that Dlx3 is sufficient to directly modulate expression of the Pgf gene promoter in placental cells.


Subject(s)
Gene Expression Profiling , Homeodomain Proteins/physiology , Placenta/metabolism , Pregnancy, Animal , Transcription Factors/physiology , Animals , Choriocarcinoma/genetics , Choriocarcinoma/metabolism , Embryo, Mammalian , Female , Gene Regulatory Networks , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mice , Mice, Knockout , Placenta Growth Factor , Placentation , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Pregnancy, Animal/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Cells, Cultured , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
18.
Mol Cell Biol ; 24(3): 1096-105, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14729956

ABSTRACT

Genetic studies using a set of overlapping deletions centered at the piebald locus on distal mouse chromosome 14 have defined a genomic region associated with respiratory distress and lethality at birth. We have isolated and characterized the candidate gene Phr1 that is located within the respiratory distress critical genomic interval. Phr1 is the ortholog of the human Protein Associated with Myc as well as Drosophila highwire and Caenorhabditis elegans regulator of presynaptic morphology 1. Phr1 is expressed in the embryonic and postnatal nervous system. In mice lacking Phr1, the phrenic nerve failed to completely innervate the diaphragm. In addition, nerve terminal morphology was severely disrupted, comparable with the synaptic defects seen in the Drosophila hiw and C. elegans rpm-1 mutants. Although intercostal muscles were completely innervated, they also showed dysmorphic nerve terminals. In addition, sensory neuron terminals in the diaphragm were abnormal. The neuromuscular junctions showed excessive sprouting of nerve terminals, consistent with inadequate presynaptic stimulation of the muscle. On the basis of the abnormal neuronal morphology seen in mice, Drosophila, and C. elegans, we propose that Phr1 plays a conserved role in synaptic development and is a candidate gene for respiratory distress and ventilatory disorders that arise from defective neuronal control of breathing.


Subject(s)
Membrane Proteins/genetics , Respiratory Insufficiency/genetics , Synapses/genetics , Amino Acid Sequence , Animals , Chromosome Mapping , Conserved Sequence , Embryo, Mammalian/metabolism , Evolution, Molecular , Fluorescent Antibody Technique , Membrane Proteins/metabolism , Mice , Nervous System/embryology , Nervous System/metabolism , Piebaldism/genetics , Respiratory Insufficiency/metabolism , Sequence Deletion , Synapses/metabolism
19.
Proc Natl Acad Sci U S A ; 100(24): 14103-8, 2003 Nov 25.
Article in English | MEDLINE | ID: mdl-14615591

ABSTRACT

Mutagenesis screens to isolate a variety of alleles leading to null and non-null phenotypes represent an important approach for the characterization of gene function. Genetic schemes that use visible markers permit the efficient recovery of chemically induced mutations. We have developed a universal reporter system to visibly mark chromosomes for genetic screens in the mouse. The dual-color reporter is based on a single vector that drives the ubiquitous coexpression of the enhanced GFP (EGFP) spectral variants yellow and cyan. We show that widespread expression of the dual-color reporter is readily detected in embryonic stem cells, mice, and throughout developmental stages. CRE-loxP- and FLPe-FRT-mediated deletion of each color cassette demonstrates the modular design of the marker system. Random integration followed by plasmid rescue and sequence-based mapping was used to introduce the marker to a defined genomic location. Thus, single-step placement will simplify the construction of a genomewide bank of marked chromosomes. The dual-color nature of the marker permits complete identification of genetic classes of progeny as embryos or mice in classic regionally directed screens. The design also allows for more efficient and novel schemes, such as marked suppressor screens, in the mouse. The result is a versatile reporter that can be used independently or in combination with the growing sets of deletion and inversion resources to enhance the design and application of a wide variety of genetic schemes for the functional dissection of the mammalian genome.


Subject(s)
Genes, Reporter , Luminescent Proteins/genetics , Mutation , Animals , Base Sequence , Chromosome Deletion , Chromosome Inversion , DNA, Recombinant/genetics , Genetic Markers , Green Fluorescent Proteins , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Recombinant Proteins/genetics , Suppression, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...