Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Integr Environ Assess Manag ; 13(1): 155-166, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27144596

ABSTRACT

Potential adverse impacts to the aquatic environment should be minimized whenever possible during an environmental dredging project by selecting realistic and technically feasible environmental targets. These targets need to balance short term impacts with the longer term benefit of removing contaminated sediments from the environment. Environmental dredging is part of the planned remediation of Randle Reef (a 60 hectare zone of mostly PAH-contaminated sediments) in Hamilton, Ontario, Canada. In this study, we describe the results of dredging elutriate toxicity testing (DETE) to assess the potential risks from dredging this PAH contaminated site. A modified elutriate preparation method intended as an alternative measure of conditions within the dredging plume was assessed with both standard water column species (Daphnia magna and fathead minnow [Pimephales promelas]) and alternative benthic and epibenthic test organisms (Chironomus dilutus and Hyalella azteca). The standard DETE test was also conducted with H. azteca to compare with the modified DETE results. The greatest toxic response was seen in the alternative test species; however, the modified DETE method resulted in less toxicity than the standard protocol. The relationship between toxicity results and chemical and/or physical characteristics of the samples was examined, but differences in toxicity could only be explained by differences in the total suspended solids concentrations in the elutriate samples. Challenges associated with DETE assessment of PAH-contaminated sediments and the implications for establishing dredging benchmarks are discussed. Integr Environ Assess Manag 2017;13:155-166. © 2016 SETAC.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Amphipoda , Animals , Chironomidae , Cyprinidae , Daphnia , Fresh Water , Ontario , Ships , Water Pollutants, Chemical/analysis
2.
Environ Sci Technol ; 46(3): 1641-9, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22191513

ABSTRACT

Using a 30-year record of biological and water chemistry data collected from seven lakes near smelters in Sudbury (Ontario, Canada) we examined the link between reductions of Cu, Ni, and Zn concentrations and zooplankton species richness. The toxicity of the metal mixtures was assessed using an additive Toxic Unit (TU) approach. Four TU models were developed based on total metal concentrations (TM-TU); free ion concentrations (FI-TU); acute LC50s calculated from the Biotic Ligand Model (BLM-TU); and chronic LC50s (acute LC50s adjusted by metal-specific acute-to-chronic ratios, cBLM-TU). All models significantly correlated reductions in metal concentrations to increased zooplankton species richness over time (p < 0.01) with a rank based on r(2) values of cBLM-TU > BLM-TU = FI-TU > TM-TU. Lake-wise comparisons within each model showed that the BLM-TU and cBLM-TU models provided the best description of recovery across all seven lakes. These two models were used to calculate thresholds for chemical and biological recovery using data from reference lakes in the same region. A threshold value of TU = 1 derived from the cBLM-TU provided the most accurate description of recovery. Overall, BLM-based TU models that integrate site-specific water chemistry-derived estimates of toxicity offer a useful predictor of biological recovery.


Subject(s)
Biodiversity , Lakes/chemistry , Metals, Heavy/toxicity , Models, Biological , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Animals , Environmental Restoration and Remediation/statistics & numerical data , Lethal Dose 50 , Metallurgy , Metals, Heavy/analysis , Ontario , Species Specificity , Water Pollutants, Chemical/analysis , Zooplankton/physiology
3.
Ecotoxicol Environ Saf ; 69(2): 199-208, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17517436

ABSTRACT

We examined changes in water chemistry and copper (Cu) toxicity in three paired renewal and flow-through acute bioassays with rainbow trout (Oncorhynchus mykiss). Test exposure methodology influenced both exposure water chemistry and measured Cu toxicity. Ammonia and organic carbon concentrations were higher and the fraction of dissolved Cu lower in renewal tests than in paired flow-through tests. Cu toxicity was also lower in renewal tests; 96 h dissolved Cu LC(50) values were 7-60% higher than LC(50)s from matching flow-through tests. LC(50) values in both types of tests were related to dissolved organic carbon (DOC) concentrations in exposure tanks. Increases in organic carbon concentrations in renewal tests were associated with reduced Cu toxicity, likely as a result of the lower bioavailability of Cu-organic carbon complexes. The biotic ligand model of acute Cu toxicity tended to underpredict toxicity in the presence of DOC. Model fits between predicted and observed toxicity were improved by assuming that only 50% of the measured DOC was reactive, and that this reactive fraction was present as fulvic acid.


Subject(s)
Copper/toxicity , Oncorhynchus mykiss , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Animals , Carbon/analysis , Copper/analysis , Lethal Dose 50 , Metals/analysis , Models, Biological , Reproducibility of Results , Water Pollutants, Chemical/analysis
4.
Environ Toxicol Chem ; 23(8): 1902-11, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15352479

ABSTRACT

Juvenile rainbow trout (Oncorhynchus mykiss) were fed live diets of Lumbriculus variegatus cultured in metal-contaminated sediments from the Clark Fork River Basin (MT, USA), an uncontaminated reference sediment, or an uncontaminated culture medium. Fish were tested in individual chambers; individual growth as well as the nutritional quality and caloric value of each trout's consumed diet were determined. Growth was measured following 14, 28, 42, 56, and 67 d of exposure. A subset of fish was sampled at 35 d for whole-body metals. Metals (whole body, digestive tract, and liver) and histology were measured at the end of the test. We observed significant growth inhibition in trout fed the contaminated diets; growth inhibition was associated with reductions in conversion of food energy to biomass rather than with reduced food intake. Growth inhibition was negatively correlated with As in trout tissue residues. Histological changes in contaminated treatments included hepatic necrosis and degenerative alterations in gallbladder. The present study provides evidence that metal-contaminated sediments can pose a hazard to trout health through a dietary exposure pathway.


Subject(s)
Food Contamination , Geologic Sediments/chemistry , Metals, Heavy/toxicity , Oligochaeta/chemistry , Oncorhynchus mykiss/growth & development , Animals , Diet , Food Chain , Gallbladder/pathology , Liver/pathology , Metals, Heavy/pharmacokinetics , Necrosis , Tissue Distribution
5.
Environ Toxicol Chem ; 21(3): 633-9, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11878477

ABSTRACT

Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Past and present habitat for this species includes waterways contaminated with heavy metals released from mining activities. Because the sensitivity of this species to copper was previously unknown, we conducted acute copper toxicity tests with bull and rainbow trout (Oncorhynchus mykiss) in side-by-side comparison tests. Bioassays were conducted using water at two temperatures (8 degrees C and 16 degrees C) and two hardness levels (100 and 220 mg/L as CaCO3). At a water hardness of 100 mg/L, both species were less sensitive to copper when tested at 16 degrees C compared to 8 degrees C. The two species had similar sensitivity to copper in 100-mg/ L hardness water, but bull trout were 2.5 to 4 times less sensitive than rainbow trout in 220-mg/L hardness water. However, when our results were viewed in the context of the broader literature on rainbow trout sensitivity to copper, the sensitivities of the two species appeared similar. This suggests that adoption of toxicity thresholds that are protective of rainbow trout would be protective of bull trout; however, an additional safety factor may be warranted because of the additional level of protection necessary for this federally threatened species.


Subject(s)
Copper/toxicity , Oncorhynchus mykiss , Trout , Water Pollutants/toxicity , Animals , Reference Values , Risk Assessment , Temperature
6.
Environ Toxicol Chem ; 21(1): 67-75, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11804063

ABSTRACT

Bull trout (Salvelinus confluentus) were recently listed as threatened in the United States under the federal Endangered Species Act. Present and historical habitat of this species includes waterways that have been impacted by metals released from mining and mineral processing activities. We conducted paired bioassays with bull trout and rainbow trout (Oncorhynchus mykiss) to examine the relative sensitivity of each species to Cd and Zn independently and as a mixture. A total of 15 pairs of acute toxicity bioassays were completed to evaluate the effects of different water hardness (30 or 90 mg/L as CaCO3), pH (6.5 or 7.5), and temperature (8 or 12 degrees C) on Cd and Zn toxicity. For both species, the acute toxicity of both Cd and Zn was greater than previously observed in laboratory studies. Bull trout were about twice as tolerant of Cd and about 50% more tolerant of Zn than were rainbow trout. Higher hardness and lower pH water produced lower toxicity and slower rates of toxicity in both species. Elevated temperature significantly increased the sensitivity of bull trout to Zn but decreased the sensitivity (not significantly) of rainbow trout to Zn. At a hardness of 30 mg/L, the toxicity values (i.e., median lethal concentration; 120-h LC50) for both species were lower than the current U.S. national water quality criteria for protection of aquatic life, indicating that current national criteria may not be protective of sensitive salmonids--including the threatened bull trout--in low calcium waters.


Subject(s)
Cadmium/toxicity , Oncorhynchus mykiss/growth & development , Trout/growth & development , Water Pollutants, Chemical/toxicity , Zinc/toxicity , Animals , Hydrogen-Ion Concentration , Lethal Dose 50 , Species Specificity , Temperature , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL