Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(3): 112244, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36920904

ABSTRACT

RNA polymerase II (RNAPII) controls expression of all protein-coding genes and most noncoding loci in higher eukaryotes. Calibrating RNAPII activity requires an assortment of polymerase-associated factors that are recruited at sites of active transcription. The Integrator complex is one of the most elusive transcriptional regulators in metazoans, deemed to be recruited after initiation to help establish and modulate paused RNAPII. Integrator is known to be composed of 14 subunits that assemble and operate in a modular fashion. We employed proteomics and machine-learning structure prediction (AlphaFold2) to identify an additional Integrator subunit, INTS15. We report that INTS15 assembles primarily with the INTS13/14/10 module and interfaces with the Int-PP2A module. Functional genomics analysis further reveals a role for INTS15 in modulating RNAPII pausing at a subset of genes. Our study shows that omics approaches combined with AlphaFold2-based predictions provide additional insights into the molecular architecture of large and dynamic multiprotein complexes.


Subject(s)
RNA Polymerase II , Transcription, Genetic , RNA Polymerase II/metabolism
2.
Nat Rev Mol Cell Biol ; 24(3): 204-220, 2023 03.
Article in English | MEDLINE | ID: mdl-36180603

ABSTRACT

In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.


Subject(s)
RNA Polymerase II , RNA Processing, Post-Transcriptional , Animals , RNA Polymerase II/metabolism , RNA , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Genomics , Transcription, Genetic
3.
Nat Commun ; 12(1): 6469, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34753942

ABSTRACT

Subunit switches in the BAF chromatin remodeler are essential during development. ARID1B and its paralog ARID1A encode for mutually exclusive BAF subunits. De novo ARID1B haploinsufficient mutations cause neurodevelopmental disorders, including Coffin-Siris syndrome, which is characterized by neurological and craniofacial features. Here, we leveraged ARID1B+/- Coffin-Siris patient-derived iPSCs and modeled cranial neural crest cell (CNCC) formation. We discovered that ARID1B is active only during the first stage of this process, coinciding with neuroectoderm specification, where it is part of a lineage-specific BAF configuration (ARID1B-BAF). ARID1B-BAF regulates exit from pluripotency and lineage commitment by attenuating thousands of enhancers and genes of the NANOG and SOX2 networks. In iPSCs, these enhancers are maintained active by ARID1A-containing BAF. At the onset of differentiation, cells transition from ARID1A- to ARID1B-BAF, eliciting attenuation of the NANOG/SOX2 networks and triggering pluripotency exit. Coffin-Siris patient cells fail to perform the ARID1A/ARID1B switch, and maintain ARID1A-BAF at the pluripotency enhancers throughout all stages of CNCC formation. This leads to persistent NANOG/SOX2 activity which impairs CNCC formation. Despite showing the typical neural crest signature (TFAP2A/SOX9-positive), ARID1B-haploinsufficient CNCCs are also aberrantly NANOG-positive. These findings suggest a connection between ARID1B mutations, neuroectoderm specification and a pathogenic mechanism for Coffin-Siris syndrome.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/metabolism , Nanog Homeobox Protein/metabolism , Neural Crest/metabolism , Transcription Factors/metabolism , Blotting, Western , DNA-Binding Proteins/genetics , Flow Cytometry , HEK293 Cells , Humans , Mutation/genetics , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Transcription Factors/genetics
4.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004147

ABSTRACT

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Substrate Specificity
5.
Cell Rep ; 23(13): 3933-3945, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949775

ABSTRACT

AT-rich interactive domain-containing proteins 1A and 1B (ARID1A and ARID1B) are mutually exclusive subunits of the chromatin remodeler SWI/SNF. ARID1A is the most frequently mutated chromatin regulator across all cancers, and ovarian clear cell carcinoma (OCCC) carries the highest prevalence of ARID1A mutations (∼57%). Despite evidence implicating ARID1A in tumorigenesis, the mechanism remains elusive. Here, we demonstrate that ARID1A binds active regulatory elements in OCCC. Depletion of ARID1A represses RNA polymerase II (RNAPII) transcription but results in modest changes to accessibility. Specifically, pausing of RNAPII is severely impaired after loss of ARID1A. Compromised pausing results in transcriptional dysregulation of active genes, which is compensated by upregulation of ARID1B. However, a subset of ARID1A-dependent genes is not rescued by ARID1B, including many p53 and estrogen receptor (ESR1) targets. Our results provide insight into ARID1A-mediated tumorigenesis and unveil functions of SWI/SNF in modulating RNAPII dynamics.


Subject(s)
Nuclear Proteins/metabolism , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Adenocarcinoma, Clear Cell/metabolism , Adenocarcinoma, Clear Cell/pathology , Cell Line, Tumor , DNA-Binding Proteins , Enhancer Elements, Genetic , Estrogen Receptor alpha/metabolism , Female , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Up-Regulation
6.
Epigenomics ; 8(4): 455-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27066839

ABSTRACT

AIM: DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. EXPERIMENTAL PROCEDURES: We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. RESULTS: Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. CONCLUSION: Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.


Subject(s)
Behavior, Animal , DNA Methylation , DNA-Binding Proteins/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Animals , Biogenic Amines/analysis , Body Weight , Brain/metabolism , CpG Islands , DNA-Binding Proteins/genetics , Female , Gene Expression Regulation , Gene Knock-In Techniques , Male , Maze Learning , Methyl-CpG-Binding Protein 2/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Spatio-Temporal Analysis , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...