Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Blood Adv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739706

ABSTRACT

A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly due to the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN. We found two paralogs of the human JAGN1 gene, jagn1a and jagn1b, which play distinct roles during zebrafish hematopoiesis. Using various approaches such as morpholino-based knockdown, CRISPR/Cas9-based gene-editing, and misexpression of a jagn1b harboring a specific human mutation, we successfully developed neutropenia while leaving other hematopoietic lineages unaffected. Further analysis of our model revealed significant upregulation of apoptosis and genes involved in unfolded protein response (UPR). However, neither UPR nor apoptosis is the primary mechanism leading to neutropenia in zebrafish. Instead, Jagn1b has a critical role in G-CSFR signaling and steady-state granulopoiesis, shedding light on the pathogenesis of neutropenia associated with JAGN1 mutations. The establishment of a zebrafish model for JAGN1-CN represents a significant advancement in understanding the specific pathological pathways underlying the disease. This model provides a valuable in vivo tool for further investigation and exploration of potential therapeutic strategies.

2.
Mol Ther ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38556793

ABSTRACT

Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.

4.
Haematologica ; 2023 10 19.
Article in English | MEDLINE | ID: mdl-37855057

ABSTRACT

Mutations in the ELANE gene, encoding the neutrophil elastase (NE) protein, are responsible for most CyN cases and approximately 25 % of CN cases. In CN and in CyN, a median of 2.8 % of CD34+ cells were early CD49f+ hematopoietic stem cells (eHSC) that did not express ELANE and thus escape from the unfolded protein response (UPR) caused by mutated NE. In CyN, the CD49f+ cells respond to G-CSF with a significant upregulation of the hematopoietic stem-cell-specific transcription factors, C/EBP/, MLL1, HOXA9, MEIS1, and HLF during the ascending arm of the cycle, resulting in the differentiation of myeloid cells to mature neutrophils at the cycle peak. However, NE protein released by neutrophils at the cycle's peak caused a negative feedback loop on granulopoiesis through the proteolytic digestion of G-CSF. In contrast, in CN patients, CD49f+ cells failed to express mRNA levels of HSC-specific transcription factors mentioned above. Rescue of C/EBP//expression in CN restored granulopoiesis.

6.
Br J Haematol ; 202(2): 393-411, 2023 07.
Article in English | MEDLINE | ID: mdl-37193639

ABSTRACT

HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.


Subject(s)
Neutropenia , Quality of Life , Humans , Proteins/genetics , Mutation , Neutropenia/congenital , Registries , Adaptor Proteins, Signal Transducing/genetics
7.
Hemasphere ; 7(4): e872, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37008163

ABSTRACT

Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.

9.
Nat Commun ; 13(1): 2948, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618709

ABSTRACT

Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.


Subject(s)
Granulocyte Colony-Stimulating Factor , Hematopoiesis , Granulocyte Colony-Stimulating Factor/genetics , Hematopoietic Stem Cells , Humans , Neutrophils
10.
Leukemia ; 36(3): 675-686, 2022 03.
Article in English | MEDLINE | ID: mdl-34732858

ABSTRACT

With an incidence of ~50%, the absence or reduced protein level of p53 is much more common than TP53 mutations in acute myeloid leukemia (AML). AML with FLT3-ITD (internal tandem duplication) mutations has an unfavorable prognosis and is highly associated with wt-p53 dysfunction. While TP53 mutation in the presence of FLT3-ITD does not induce AML in mice, it is not clear whether p53 haploinsufficiency or loss cooperates with FLT3-ITD in the induction of AML. Here, we generated FLT3-ITD knock-in; p53 knockout (heterozygous and homozygous) double-transgenic mice and found that both alterations strongly cooperated in the induction of cytogenetically normal AML without increasing the self-renewal potential. At the molecular level, we found the strong upregulation of Htra3 and the downregulation of Lin28a, leading to enhanced proliferation and the inhibition of apoptosis and differentiation. The co-occurrence of Htra3 overexpression and Lin28a knockdown, in the presence of FLT3-ITD, induced AML with similar morphology as leukemic cells from double-transgenic mice. These leukemic cells were highly sensitive to the proteasome inhibitor carfilzomib. Carfilzomib strongly enhanced the activity of targeting AXL (upstream of FLT3) against murine and human leukemic cells. Our results unravel a unique role of p53 haploinsufficiency or loss in the development of FLT3-ITD + AML.


Subject(s)
Gene Expression Regulation, Leukemic , Haploinsufficiency , Leukemia, Myeloid, Acute/genetics , Tumor Suppressor Protein p53/genetics , fms-Like Tyrosine Kinase 3/genetics , Animals , Gene Duplication , Gene Knock-In Techniques , Mice , Mice, Inbred C57BL , Mutation
11.
Cell Stem Cell ; 28(5): 906-922.e6, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33894142

ABSTRACT

Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.


Subject(s)
Induced Pluripotent Stem Cells , Leukemia, Myeloid, Acute , Neoplasm Proteins , Neutropenia , Congenital Bone Marrow Failure Syndromes , Humans , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Neoplasm Proteins/genetics , Neutropenia/congenital , Neutropenia/genetics , Oncogenes
12.
Stem Cell Res Ther ; 12(1): 112, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33546767

ABSTRACT

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) regulates cellular functions through the protein deacetylation activity of nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins (SIRTs). SIRTs regulate functions of histones and none-histone proteins. The role of NAMPT/SIRT pathway in the regulation of maintenance and differentiation of human-induced pluripotent stem (iPS) cells is not fully elucidated. METHODS: We evaluated the effects of specific inhibitors of NAMPT or SIRT2 on the pluripotency, proliferation, survival, and hematopoietic differentiation of human iPS cells. We also studied the molecular mechanism downstream of NAMPT/SIRTs in iPS cells. RESULTS: We demonstrated that NAMPT is indispensable for the maintenance, survival, and hematopoietic differentiation of iPS cells. We found that inhibition of NAMPT or SIRT2 in iPS cells induces p53 protein by promoting its lysine acetylation. This leads to activation of the p53 target, p21, with subsequent cell cycle arrest and induction of apoptosis in iPS cells. NAMPT and SIRT2 inhibition also affect hematopoietic differentiation of iPS cells in an embryoid body (EB)-based cell culture system. CONCLUSIONS: Our data demonstrate the essential role of the NAMPT/SIRT2/p53/p21 signaling axis in the maintenance and hematopoietic differentiation of iPS cells.


Subject(s)
Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Cell Differentiation , Cytokines/genetics , Cytokines/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Signal Transduction , Sirtuin 2/genetics , Sirtuin 2/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
Haematologica ; 106(5): 1311-1320, 2021 05 01.
Article in English | MEDLINE | ID: mdl-32327498

ABSTRACT

Severe congenital neutropenia (CN) is a rare heterogeneous group of diseases, characterized by a granulocytic maturation arrest. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated CN. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we have found that interference with the Hax1 function decreases the expression level of key target genes of the granulocyte-colony stimulating factor (G-CSF) signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by G-CSF, which is also the main therapeutic intervention for patients who have CN. Our results demonstrate that zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for CN patients, particularly for those individuals that do not respond to the G-CSF treatment.


Subject(s)
Neutropenia , Zebrafish , Adaptor Proteins, Signal Transducing/genetics , Animals , Congenital Bone Marrow Failure Syndromes , Granulocyte Colony-Stimulating Factor , Humans , Mutation , Neutropenia/chemically induced , Neutropenia/congenital , Neutropenia/genetics , Zebrafish/genetics
15.
Blood ; 137(10): 1340-1352, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33227812

ABSTRACT

Heterozygous de novo missense variants of SRP54 were recently identified in patients with congenital neutropenia (CN) who display symptoms that overlap with Shwachman-Diamond syndrome (SDS). Here, we investigate srp54 knockout zebrafish as the first in vivo model of SRP54 deficiency. srp54-/- zebrafish experience embryonic lethality and display multisystemic developmental defects along with severe neutropenia. In contrast, srp54+/- zebrafish are viable, fertile, and show only mild neutropenia. Interestingly, injection of human SRP54 messenger RNAs (mRNAs) that carry mutations observed in patients (T115A, T117Δ, and G226E) aggravated neutropenia and induced pancreatic defects in srp54+/- fish, mimicking the corresponding human clinical phenotypes. These data suggest that the various phenotypes observed in patients may be a result of mutation-specific dominant-negative effects on the functionality of the residual wild-type SRP54 protein. Overexpression of mutated SRP54 also consistently induced neutropenia in wild-type fish and impaired the granulocytic maturation of human promyelocytic HL-60 cells and healthy cord blood-derived CD34+ hematopoietic stem and progenitor cells. Mechanistically, srp54-mutant fish and human cells show impaired unconventional splicing of the transcription factor X-box binding protein 1 (Xbp1). Moreover, xbp1 morphants recapitulate phenotypes observed in srp54 deficiency and, importantly, injection of spliced, but not unspliced, xbp1 mRNA rescues neutropenia in srp54+/- zebrafish. Together, these data indicate that SRP54 is critical for the development of various tissues, with neutrophils reacting most sensitively to the loss of SRP54. The heterogenic phenotypes observed in patients that range from mild CN to SDS-like disease may be the result of different dominant-negative effects of mutated SRP54 proteins on downstream XBP1 splicing, which represents a potential therapeutic target.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , Neutropenia/congenital , Signal Recognition Particle/genetics , X-Box Binding Protein 1/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Disease Models, Animal , Gene Deletion , Gene Expression Regulation, Developmental , Gene Knockout Techniques , HL-60 Cells , Humans , Models, Molecular , Mutation , Neutropenia/genetics , RNA Splicing , RNA, Messenger/genetics
16.
PLoS Biol ; 18(12): e3000919, 2020 12.
Article in English | MEDLINE | ID: mdl-33351791

ABSTRACT

Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.5 Å. Despite the lack of significant topological or sequence similarity to their natural granulopoietic counterpart, 2 designs bound to the granulocyte colony-stimulating factor (G-CSF) receptor and exhibited potent, but delayed, in vitro proliferative activity in a G-CSF-dependent cell line. Interestingly, the designs also induced proliferation and differentiation of primary human hematopoietic stem cells into mature granulocytes, highlighting the utility of our approach to develop highly active therapeutic leads purely based on computational design.


Subject(s)
Granulocytes/cytology , Protein Engineering/methods , Cell Differentiation , Cells, Cultured , Computational Biology/methods , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocytes/drug effects , Hematopoiesis/drug effects , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Humans , Neutrophils , Structure-Activity Relationship
17.
Ann Hematol ; 99(10): 2329-2338, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32821971

ABSTRACT

Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.


Subject(s)
Congenital Bone Marrow Failure Syndromes/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Hematopoietic Stem Cells/pathology , Myeloid Cells/pathology , Myelopoiesis/genetics , Neutropenia/congenital , Preleukemia/genetics , Receptors, Colony-Stimulating Factor/genetics , Animals , Cell Division , Colony-Forming Units Assay , Congenital Bone Marrow Failure Syndromes/pathology , Core Binding Factor Alpha 2 Subunit/physiology , Gene Expression Profiling , Immunity, Innate , Inflammation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutropenia/genetics , Neutropenia/pathology , Preleukemia/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Colony-Stimulating Factor/physiology , Recombinant Proteins/genetics , Specific Pathogen-Free Organisms
19.
Ann N Y Acad Sci ; 1466(1): 83-92, 2020 04.
Article in English | MEDLINE | ID: mdl-32083314

ABSTRACT

Cyclic neutropenia (CyN) is a hematologic disorder in which peripheral blood absolute neutrophil counts (ANCs) show cycles of approximately 21-day intervals. The majority of CyN patients harbor ELANE mutations, but the mechanism of ANC cycling is unclear. We performed analysis of bone marrow (BM) subpopulations in CyN patients at the peak and the nadir of the ANC cycle and detected high proportions of BM hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) at the nadir of the ANC cycle, as compared with the peak. BM HSPCs produced fewer granulocyte colony-forming unit colonies at the ANC peak. To investigate the mechanism of cycling, we found that mRNA expression levels of ELANE and unfolded protein response (UPR)-related genes (ATF6, BiP (HSPA5), CHOP (DDIT3), and PERK (EIF2AK3)) were elevated, but antiapoptotic genes (Bcl-2 (BCL2) and bcl-xL (BCL2L1)) were reduced in CD34+ cells tested at the ANC nadir. Moreover, HSPCs revealed increased levels of reactive oxygen species and gH2AX at the ANC nadir. We suggest that in CyN patients, some HSPCs escape the UPR-induced endoplasmic reticulum (ER) stress and proliferate in response to granulocyte colony-stimulating factor (G-CSF) to a certain threshold at which UPR again affects the majority of HSPCs. There is a cyclic balance between ER stress-induced apoptosis of HSPCs and compensatory G-CSF-stimulated HSPC proliferation followed by granulocytic differentiation.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Leukocyte Elastase/genetics , Neutropenia/etiology , Unfolded Protein Response/physiology , Bone Marrow/drug effects , Bone Marrow/metabolism , Bone Marrow/pathology , Cells, Cultured , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Follow-Up Studies , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoiesis/drug effects , Hematopoiesis/genetics , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Hematopoietic Stem Cells/physiology , Humans , Leukocyte Elastase/physiology , Mutation , Neutropenia/drug therapy , Neutropenia/metabolism , Neutropenia/pathology , Reactive Oxygen Species/metabolism , Severity of Illness Index , Signal Transduction/drug effects , Signal Transduction/physiology , Unfolded Protein Response/drug effects , Unfolded Protein Response/genetics
20.
Methods Mol Biol ; 2115: 455-469, 2020.
Article in English | MEDLINE | ID: mdl-32006417

ABSTRACT

In this chapter, we present an optimized CRISPR/Cas9 RNP nucleofection approach for gene knockout (KO) in hematopoietic stem and progenitor cells (HSPCs). With experimentally proved active locus-specific sgRNAs, we routinely reach over 80% gene KO in HSPCs, thus avoiding the need for cell sorting or enrichment of targeted cell population. Additionally, we provide a protocol for in vitro granulocytic differentiation of HSPCs after gene KO and detailed description of granulocyte function tests which can be applied to study the effects of a particular gene KO.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Granulocytes/cytology , Hematopoietic Stem Cells/cytology , Leukopoiesis , Cells, Cultured , Gene Knockout Techniques/methods , Granulocytes/metabolism , Hematopoietic Stem Cells/metabolism , Humans , RNA, Guide, Kinetoplastida/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...