Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 202: 107969, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37597276

ABSTRACT

Tana (Zanthoxylum ailanthoides), a perennial deciduous species in the Rutaceae family, possesses leaves with a unique fragrance that indigenous peoples incorporate into their traditional cuisine. In Kalibuan, the cultivated tana trees were pruned repeatedly to maintain a shorter height, which led to the growth of new leaves that were spicier and pricklier. Tana leaves contain a range of volatile terpenoids, and the pungent aroma may arise from the presence of monoterpenoids. To gain insight into the biosynthetic pathway, five candidate monoterpene synthase genes were cloned and characterized using a purified recombinant protein assay. The main product of Za_mTPS1, Za_mTPS2, and Za_mTPS5 is sabinene, geraniol, and (E)-ß-ocimene, respectively. The main product of Za_mTPS3 and Za_mTPS4 is linalool. Real-time PCR analysis revealed that Za_mTPS1 and Za_mTPS5 are expressed at higher levels in prickly leaves of cultivated tana, suggesting that they may contribute to the distinctive aroma of this plant.


Subject(s)
Apiaceae , Intramolecular Lyases , Zanthoxylum , Zanthoxylum/genetics , Monoterpenes
2.
J Agric Food Chem ; 69(42): 12494-12504, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34664500

ABSTRACT

Zanthoxylum ailanthoides is a traditional spice crop in Taiwan with unique smells and tastes that differ between prickly (young) and nonprickly (mature) leaves. Different volatile terpenes between prickly young and nonprickly mature leaves were identified and considered to be one of the sources of their aromas. A transcriptome database was established to explore the biosynthesis of these compounds, and candidate terpene synthase genes were identified. The functions of these synthases were investigated using recombinant protein reactions in both purification and coexpression assays. ZaTPS1, ZaTPS2, and ZaTPS3 are germacrene D synthases, with different amino acid sequences. The main products of ZaTPS4 are trans-α-bergamotene and (E)-ß-farnesene, whereas ZaTPS5 forms multiple products, and ZaTPS6 produces ß-caryophyllene. ZaTPS7 forms monoterpene (E)-ß-ocimene and sesquiterpene (E,E)-α-farnesene. Reverse transcription PCR of ZaTPS gene expression in young and mature leaves revealed that ZaTPS1 was responsible for the mellow aroma in mature leaves. The expression of ZaTPS6 suggested that it plays a role in the background aromas of both types of leaves. Our findings deepened the understanding of the volatile compounds of Z. ailanthoides and revealed the source of its unique aromas by clarifying the biosynthesis of these compounds.


Subject(s)
Alkyl and Aryl Transferases , Sesquiterpenes , Volatile Organic Compounds , Zanthoxylum , Alkyl and Aryl Transferases/genetics , Folklore , Odorants , Plant Proteins/genetics , Taiwan , Terpenes/analysis
3.
Physiol Plant ; 172(3): 1750-1763, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33675234

ABSTRACT

In certain plants, leaf coloration occurs in young and senescent leaves; however, it is unclear whether these two developmental stages are controlled by the same regulatory mechanisms. Formosan sweet gum (Liquidambar formosana Hance) is a subtropical deciduous tree species that possesses attractive autumnal leaf coloration. The color of young leaves is closer to purplish red, while senescent leaves are more orange-red to dark red. It was confirmed that delphinidin and cyanidin are the two anthocyanidins that contribute to the color of Formosan sweet gum leaves, and the content of different anthocyanins influences the appearance of color. To elucidate the regulation of anthocyanidin biosynthesis, recombinant DIHYDROFLAVONOL-4-REDUCTASEs (LfDFR1 and LfDFR2) (EC 1.1.1.234) were produced, and their substrate acceptability was investigated both in vitro and in planta. The functions of flavanones and dihydroflavonols modification by FLAVONOID 3' HYDROXYLASE (LfF3'H1) (EC 1.14.14.82) and FLAVONOID 3'5' HYDROXYLASE (LfF3'5'H) (EC 1.14.14.81) were verified using a transient overexpression experiment in Nicotiana benthamiana. The results showed that LfMYB5 induced LfF3'5'H and LfMYB123 induced both LfF3'H1 and LfDFR1 in spring when the leaves were expanding, whereas LfMYB113 induced LfF3'H1, LfDFR1, and LfDFR2 in late autumn to winter when the leaves were undergoing leaf senescence. In conclusion, the color variation of Formosan sweet gum in young and senescent leaves was attributed to the composition of anthocyanidins through the transcriptional regulation of LfF3'H1 and LfF3'5'H by LfMYB5, LfMYB113, and LfMYB123.


Subject(s)
Liquidambar , Anthocyanins , Color , Gene Expression Regulation, Plant , Liquidambar/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
4.
Plant Sci ; 291: 110325, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31928688

ABSTRACT

In this study, a microRNA microarray was used to investigate the microRNA profiles from young green leaves, and senescent red leaves and yellow leaves of Formosan sweet gum (Liquidambar formosana Hance). The conserved microRNA miR164 was highly expressed in green leaves compared to senescent leaves. The pri-microRNA of miR164 was identified and named lfo-miR164b based on its secondary structure. In Agrobacterium-mediated transient expression experiment, lfo-miR164b was confirmed to regulate the leaf senescence-associated gene LfNAC1 and LfNAC100. Transient overexpression of LfNAC1 induced the expression of leaf senescence genes in Nicotiana benthamiana. In addition, LfNAC1 activated the expression of proLfSGR::YFP, suggesting the regulatory role of LfNAC1 in leaf senescence. In summary, miR164 inhibits the expression of LfNAC1 in spring and summer, later on LfNAC1 actives leaf senescence-associated genes to cause leaf senescence following a gradual decline of miR164 as the seasons change. The "miR164-NAC" regulatory mechanism was confirmed in Formosan sweet gum autumn leaf senescence.


Subject(s)
Liquidambar/genetics , MicroRNAs/genetics , Plant Leaves/physiology , Plant Proteins/genetics , RNA, Plant/genetics , Aging/genetics , Liquidambar/metabolism , MicroRNAs/metabolism , Plant Leaves/genetics , Plant Proteins/metabolism , RNA, Plant/metabolism , Seasons
5.
J Nat Prod ; 81(5): 1162-1172, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29746128

ABSTRACT

Terpenoids are a large group of important secondary metabolites that are involved in a variety of physiological mechanisms, and many are used commercially in the cosmetics and pharmaceutical industries. During the past decade, the topic of seasonal variation in terpenoid biosynthesis has garnered increasing attention. Formosan sweet gum ( Liquidambar formosana Hance) is a deciduous tree species. The expression of terpene synthase and accumulation of terpenoids in leaves may vary in different seasons. Here, four sesquiterpene synthases (i.e., LfTPS01, LfTPS02, LfTPS03, and LfTPS04) and a bifunctional mono/sesquiterpene synthase ( LfTPS05) were identified from Formosan sweet gum. The gene expression of LfTPS01, LfTPS02, and LfTPS03 showed seasonal diversification, and, in addition, expression of LfTPS04 and LfTPS05 was induced by methyl jasmonate treatment. The major products LfTPS01, LfTPS02, LfTPS04, and LfTPS05 are hedycaryol, α-selinene, trans-ß-caryophyllene, α-copaene/δ-cadinene, and nerolidol/linalool, respectively. The data indicated that the sesquiterpenoid content in the essential oil of Formosan sweet gum leaves shows seasonal differences that were correlated to the sesquiterpene synthase gene expression.


Subject(s)
Alkyl and Aryl Transferases/genetics , Gene Expression/genetics , Liquidambar/genetics , Plant Proteins/genetics , Sesquiterpenes/metabolism , Acyclic Monoterpenes , Monoterpenes/metabolism , Plant Leaves/genetics , Polycyclic Sesquiterpenes , Seasons
6.
Plant Cell Physiol ; 58(3): 508-521, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28115495

ABSTRACT

The regulation of autumn leaf coloration in deciduous trees has long been an enigma. Due to the fact that different coloration phenotypes may be considered when planting, more understanding of the regulation mechanism is needed. In this study, a R2R3-MYB transcription factor gene LfMYB113 was identified from a subtropical deciduous tree species Formosan sweet gum (Liquidambar formosana Hance). The expression patterns of LfMYB113 in four selected phenotypes were different and were positively correlated with leaf anthocyanin content. In a 35S::LfMYB113 transgenic Nicotiana tabacum plant, both the early and late genes in the anthocyanin biosynthetic pathway were shown to be up-regulated. It was also shown that LfMYB113 can activate the promoter sequence of LfDFR1 and LfDFR2. Transient overexpression of LfMYB113 in Nicotiana benthamiana showed strong anthocyanin accumulation and pre-senescence; the latter was confirmed by up-regulation of senescence-associated genes. In addition, the activation of proLfSGR::YFP by LfMYB113 in transient experiments indicated that LfMYB113 may have a role in regulation of Chl degradation. To our knowledge, this is the first time a R2R3-MYB transcription factor has been functionally identified as one of the key regulators of autumn leaf coloration and autumn leaf senescence.


Subject(s)
Liquidambar/metabolism , Pigmentation/physiology , Plant Leaves/metabolism , Plant Proteins/metabolism , Anthocyanins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Liquidambar/genetics , Pigmentation/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Plant Cell Physiol ; 56(1): 163-74, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392065

ABSTRACT

Autumn leaf senescence is a spectacular natural phenomenon; however, the regulation networks controlling autumnal colors and the leaf senescence program remain largely unelucidated. Whether regulation of leaf senescence is similar in subtropical deciduous plants and temperate deciduous plants is also unknown. In this study, the gene expression of a subtropical deciduous tree, Formosan gum (Liquidambar formosana Hance), was profiled. The transcriptomes of April leaves (green leaves, 'G') and December leaves (red leaves, 'R') were investigated by next-generation gene sequencing. Out of 58,402 de novo assembled contigs, 32,637 were annotated as putative genes. Furthermore, the L. formosana-specific microarray designed based on total contigs was used to extend the observation period throughout the growing seasons of 2011-2013. Network analysis from the gene expression profile focused on the genes up-regulated when autumn leaf senescence occurred. LfWRKY70, LfWRKY75, LfWRKY65, LfNAC1, LfSPL14, LfNAC100 and LfMYB113 were shown to be key regulators of leaf senescnece, and the genes regulated by LfWRKY75, LfNAC1 and LfMYB113 are candidates to link chlorophyll degradation and anthocyanin biosynthesis to senescence. In summary, the gene expression profiles over the entire year of the developing leaf from subtropical deciduous trees were used for in silico analysis and the putative gene regulation in autumn coloration and leaf senescence is discussed in this study.


Subject(s)
Gene Expression Regulation, Plant , Liquidambar/genetics , Transcriptome , Color , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Liquidambar/physiology , Microarray Analysis , Pigmentation , Plant Leaves/genetics , Plant Leaves/physiology , Seasons , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...