Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 96: 103211, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796945

ABSTRACT

In the medical field, datasets are mostly integrated across sites due to difficult data acquisition and insufficient data at a single site. The domain shift problem caused by the heterogeneous distribution among multi-site data makes autism spectrum disorder (ASD) hard to identify. Recently, domain adaptation has received considerable attention as a promising solution. However, domain adaptation on graph data like brain networks has not been fully studied. It faces two major challenges: (1) complex graph structure; and (2) multiple source domains. To overcome the issues, we propose an end-to-end structure-aware domain adaptation framework for brain network analysis (BrainDAS) using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed approach contains two stages: supervision-guided multi-site graph domain adaptation with dynamic kernel generation and graph classification with attention-based graph pooling. We evaluate our BrainDAS on a public dataset provided by Autism Brain Imaging Data Exchange (ABIDE) which includes 871 subjects from 17 different sites, surpassing state-of-the-art algorithms in several different evaluation settings. Furthermore, our promising results demonstrate the interpretability and generalization of the proposed method. Our code is available at https://github.com/songruoxian/BrainDAS.


Subject(s)
Algorithms , Autism Spectrum Disorder , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Image Processing, Computer-Assisted/methods
2.
IEEE J Biomed Health Inform ; 27(8): 4154-4165, 2023 08.
Article in English | MEDLINE | ID: mdl-37159311

ABSTRACT

The less training data and insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is significant to construct a learning framework that can capture more information in limited data and insufficient supervision. To address these issues, we focus on self-supervised learning and aim to generalize the self-supervised learning to the brain networks, which are non-Euclidean graph data. More specifically, we propose an ensemble masked graph self-supervised framework named BrainGSLs, which incorporates 1) a local topological-aware encoder that takes the partially visible nodes as input and learns these latent representations, 2) a node-edge bi-decoder that reconstructs the masked edges by the representations of both the masked and visible nodes, 3) a signal representation learning module for capturing temporal representations from BOLD signals and 4) a classifier used for the classification. We evaluate our model on three real medical clinical applications: diagnosis of Autism Spectrum Disorder (ASD), diagnosis of Bipolar Disorder (BD) and diagnosis of Major Depressive Disorder (MDD). The results suggest that the proposed self-supervised training has led to remarkable improvement and outperforms state-of-the-art methods. Moreover, our method is able to identify the biomarkers associated with the diseases, which is consistent with the previous studies. We also explore the correlation of these three diseases and find the strong association between ASD and BD. To the best of our knowledge, our work is the first attempt of applying the idea of self-supervised learning with masked autoencoder on the brain network analysis.


Subject(s)
Autism Spectrum Disorder , Depressive Disorder, Major , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Knowledge , Supervised Machine Learning
3.
Comput Biol Med ; 153: 106521, 2023 02.
Article in English | MEDLINE | ID: mdl-36630830

ABSTRACT

Modeling the dynamics characteristics in functional brain networks (FBNs) is important for understanding the functional mechanism of the human brain. However, the current works do not fully consider the potential complex spatial and temporal correlations in human brain. To solve this problem, we propose a temporal graph representation learning framework for brain networks (BrainTGL). The framework involves a temporal graph pooling for eliminating the noisy edges as well as data inconsistency, and a dual temporal graph learning for capturing the spatio-temporal features of the temporal graphs. The proposed method has been evaluated in both tasks of brain disease (ASD, MDD and BD) diagnosis/gender classification (classification task) and subtype identification (clustering task) on the four datasets: Human Connectome Project (HCP), Autism Brain Imaging Data Exchange (ABIDE), NMU-MDD and NMU-BD. A large improvement is achieved for the ASD diagnosis. Specifically, our model outperforms the GroupINN and ST-GCN by an average increase of 4.2% and 8.6% on accuracy, respectively, demonstrating its advantages in comparison to the state-of-the-art methods based on functional connectivity features or learned spatio-temporal features. The results demonstrate that learning the spatial-temporal brain network representation for modeling dynamics characteristics in FBNs can improve the model's performance on both disease diagnosis and subtype identification tasks for multiple disorders. Apart from performance, the improvements of computational efficiency and convergence speed reduce training costs.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Connectome/methods , Learning
4.
Int J Comput Assist Radiol Surg ; 18(4): 663-673, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36333597

ABSTRACT

PURPOSE: Finding the biomarkers associated with autism spectrum disorder (ASD) is helpful for understanding the underlying roots of the disorder and can lead to earlier diagnosis and more targeted treatments. In essence, we are faced with two challenges (i) how to learn a node representation and a clean graph structure from original graph data with high dimensionality and (ii) how to jointly model the procedure of node representation learning, structure learning and graph classification. METHODS: We propose FSL-BrainNet, an interpretable graph convolution network (GCN) model for jointly Learning of node Features and clean Structures in brain networks for automatic brain network classification and interpretation. We formulate an end-to-end trainable and interpretable framework for graph classification and biomarkers (salient brain regions and potential subnetworks) identification. RESULTS: The experimental results on the ABIDE dataset show that our proposed methods not only achieve improved prediction performance compared with the state-of-the-art methods, but also find a compact set of highly suggestive biomarkers including relevant brain regions and subnetworks to ASD. CONCLUSION: Through node feature learning and structure learning, our model can simultaneously select important brain regions and identify subnetworks.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnosis , Learning , Brain/diagnostic imaging
5.
Med Biol Eng Comput ; 60(7): 1897-1913, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522357

ABSTRACT

The dynamic functional connectivity analysis provides valuable information for understanding functional brain activity underlying different cognitive processes. Modeling spatio-temporal dynamics in functional brain networks is critical for underlying the functional mechanism of autism spectrum disorder (ASD). In our study, we propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework, which thoroughly captures spatio-temporal features in resting-state functional magnetic resonance imaging (rs-fMRI) data. Specifically, we first transform rs-fMRI time-series into temporal multi-graph using the sliding window technique. A temporal multi-graph clustering is then designed to eliminate the inconsistency of the temporal multi-graph series. Then, a graph structure-aware LSTM (GSA-LSTM) is further proposed to capture the spatio-temporal embedding for temporal graphs. Furthermore, The proposed GSA-LSTM can not only capture discriminative features for prediction but also impute the incomplete graphs for the temporal multi-graph series. Extensive experiments on the autism brain imaging data exchange (ABIDE) dataset demonstrate that the proposed dynamic brain network embedding learning outperforms the state-of-the-art brain network classification models. Furthermore, the obtained clustering results are consistent with the previous neuroimaging-derived evidence of biomarkers for autism spectrum disorder (ASD).


Subject(s)
Autism Spectrum Disorder , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Neuroimaging
6.
Comput Methods Programs Biomed ; 219: 106772, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35395591

ABSTRACT

PURPOSE: Accurate diagnosis of autism spectrum disorder (ASD) plays a key role in improving the condition and quality of life for patients. In this study, we mainly focus on ASD diagnosis with functional brain networks (FBNs). The major challenge for brain networks modeling is the high dimensional connectivity in brain networks and limited number of subjects, which hinders the classification capability of graph convolutional networks (GCNs). METHOD: To alleviate the influence of the limited data and high dimensional connectivity, we introduce a unified three-stage graph learning framework for brain network classification, involving multi-graph clustering, graph generation and graph classification. The framework combining Graph Generation, Clustering and Classification Networks (GraphCGC-Net) enhances the critical connections by multi-graph clustering (MGC) with a supervision scheme, and generates realistic brain networks by simultaneously preserving the global consistent distribution and local topology properties. RESULTS: To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and conduct extensive experiments on the ASD classification problem. Our proposed method achieves an average accuracy of 70.45% and an AUC of 72.76% on ABIDE. Compared with the traditional GCN model, the proposed GraphCGC-Net obtains 9.3%, and 10.64% improvement in terms of accuracy and AUC metrics, respectively. CONCLUSION: The comprehensive experiments demonstrate that our GraphCGC-Net is effective for graph classification in brain disorders diagnosis. Moreover, we find that MGC can generate biologically meaningful subnetworks, which is highly consistent with the previous neuroimaging-derived biomarker evidence of ASD. More importantly, the promising results suggest that applying generative adversarial networks (GANs) in brain networks to improve the classification performance is worth further investigation.


Subject(s)
Autism Spectrum Disorder , Interdisciplinary Placement , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Cluster Analysis , Humans , Neural Networks, Computer , Quality of Life
7.
Comput Biol Med ; 142: 105239, 2022 03.
Article in English | MEDLINE | ID: mdl-35066446

ABSTRACT

PURPOSE: Recently, functional brain networks (FBN) have been used for the classification of neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder diagnosis with FBN is a challenging task due to the high heterogeneity in subjects and the noise correlations in brain networks. Meanwhile, it is challenging for the existing deep learning models to provide interpretable insights into the brain network. We propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework. METHOD: In this paper, we build upon graph neural network in order to learn effective representations for brain networks in an end-to-end fashion. Specifically, we present a prior brain structure learning-guided multi-view graph convolutional neural network (MVS-GCN), which collaborates the graph structure learning and multi-task graph embedding learning to improve the classification performance and identify the potential functional subnetworks. RESULTS: To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. The experimental results indicate that our MVS-GCN can achieve enhanced performance compared with state-of-the-art methods. Notably, MVS-GCN achieves an average accuracy/AUC of 69.38%/69.01% on the ABIDE dataset. Moreover, the obtained results from our model show high consistency with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed MVS-GCN model. CONCLUSION: The proposed MVS-GCN method performs a graph embedding learning from the multi-views graph embedding learning perspective while considering eliminating the heterogeneity in brain networks and enhancing the feature representation of functional subnetworks, which can capture the essential embeddings to improve the classification performance of brain disorder diagnosis. The code is available at https://github.com/GuangqiWen/MVS-GCN.


Subject(s)
Alzheimer Disease , Autism Spectrum Disorder , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Humans , Neural Networks, Computer , Neuroimaging/methods
8.
Neuroinformatics ; 20(2): 353-375, 2022 04.
Article in English | MEDLINE | ID: mdl-34761367

ABSTRACT

Accurate diagnosis of psychiatric disorders plays a critical role in improving the quality of life for patients and potentially supports the development of new treatments. Graph convolutional networks (GCNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GCNs model for brain networks faces several challenges, including high dimensional and noisy correlation in the brain networks, limited labeled training data, and depth limitation of GCN learning. Generalization and interpretability are important in developing predictive models for clinical diagnosis. To address these challenges, we proposed an ensemble framework involving hierarchical GCN and transfer learning for sparse brain networks, which allows GCN to capture the intrinsic correlation among the subjects and domains, to improve the network embedding learning for disease diagnosis. Extensive experiments on two real medical clinical applications: diagnosis of Autism spectrum disorder (ASD) and diagnosis of Alzheimer's disease (AD) on both the ADNI and ABIDE databases, showing the effectiveness of the proposed framework. We achieved state-of-the-art accuracy and AUC for AD/MCI and ASD/NC (Normal control) classification in comparison with studies that used functional connectivity as features or GCN models. The proposed TE-HI-GCN model achieves the best classification performance, leading to about 27.93% (31.38%) improvement for ASD and 16.86% (44.50%) for AD in terms of accuracy and AUC compared with the traditional GCN model. Moreover, the obtained clustering results show high correspondence with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed TE-HI-GCN model. Furthermore, this work is the first attempt of transfer learning on the two related disorder domains to uncover the correlation among the two diseases with a transfer learning scheme.


Subject(s)
Alzheimer Disease , Autism Spectrum Disorder , Autism Spectrum Disorder/diagnostic imaging , Humans , Neural Networks, Computer , Neuroimaging/methods , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...