Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(11): e202400049, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38193338

ABSTRACT

Photodynamic therapy (PDT), as an emerging cancer treatment, requires the development of highly desirable photosensitizers (PSs) with integrated functional groups to achieve enhanced therapeutic efficacy. Coordination-driven self-assembly (CDSA) would provide an alternative approach for combining multiple PSs synergistically. Here, we demonstrate a simple yet powerful strategy of combining conventional chromophores (tetraphenylethylene, porphyrin, or Zn-porphyrin) with pyridinium salt PSs together through condensation reactions, followed by CDSA to construct a series of novel metallo-supramolecular PSs (S1-S3). The generation of reactive oxygen species (ROS) is dramatically enhanced by the direct combination of two different PSs, and further reinforced in the subsequent ensembles. Among all the ensembles, S2 with two porphyrin cores shows the highest ROS generation efficiency, specific interactions with lysosome, and strong emission for probing cells. Moreover, the cellular and living experiments confirm that S2 has excellent PDT efficacy, biocompatibility, and biosafety. As such, this study will enable the development of more efficient PSs with potential clinical applications.


Subject(s)
Neoplasms , Photochemotherapy , Porphyrins , Humans , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species , Porphyrins/pharmacology , Porphyrins/therapeutic use , Neoplasms/drug therapy
2.
Adv Mater ; 36(14): e2309748, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38165653

ABSTRACT

One-for-all phototheranostics, referring to a single component simultaneously exhibiting multiple optical imaging and therapeutic modalities, has attracted significant attention due to its excellent performance in cancer treatment. Benefitting from the superiority in balancing the diverse competing energy dissipation pathways, aggregation-induced emission luminogens (AIEgens) are proven to be ideal templates for constructing one-for-all multimodal phototheranostic agents. However, to this knowledge, the all-round AIEgens that can be triggered by a second near-infrared (NIR-II, 1000-1700 nm) light have not been reported. Given the deep tissue penetration and high maximum permissible exposure of the NIR-II excitation light, herein, this work reports for the first time an NIR-II laser excitable AIE small molecule (named BETT-2) with multimodal phototheranostic features by taking full use of the advantage of AIEgens in single molecule-facilitated versatility as well as synchronously maximizing the molecular donor-acceptor strength and conformational distortion. As formulated into nanoparticles (NPs), the high performance of BETT-2 NPs in NIR-II light-driven fluorescence-photoacoustic-photothermal trimodal imaging-guided photodynamic-photothermal synergistic therapy of orthotopic mouse breast tumors is fully demonstrated by the systematic in vitro and in vivo evaluations. This work offers valuable insights for developing NIR-II laser activatable one-for-all phototheranostic systems.


Subject(s)
Nanoparticles , Neoplasms , Animals , Mice , Light , Phototherapy/methods , Theranostic Nanomedicine/methods , Cell Line, Tumor
3.
Biomaterials ; 301: 122276, 2023 10.
Article in English | MEDLINE | ID: mdl-37579564

ABSTRACT

Photoimmunotherapy has been acknowledged to be an unprecedented strategy to obtain significantly improved cancer treatment efficacy. In this regard, the exploitation of high-performance multimodal phototheranostic agents is highly desired. Apart from tailoring electron donors, acceptor engineering is gradually rising as a deliberate approach in this field. Herein, we rationally designed a family of aggregation-induced emission (AIE)-active compounds with the same donors but different acceptors based on the acceptor engineering. Through finely adjusting the functional groups on electron acceptors, the electron affinity of electron acceptors and the conformation of the compounds were simultaneously modulated. It was found that one of the molecules (named DCTIC), bearing a moderately electrophilic electron acceptor and the best planarity, exhibited optimal phototheranostic properties in terms of light-harvesting ability, fluorescence emission, reactive oxygen species (ROS) production, and photothermal performance. For the purpose of amplified therapeutic outcomes, DCTIC was fabricated into tumor and mitochondria dual-targeted DCTIC nanoparticles (NPs), which afforded good performance in the fluorescence/photoacoustic/photothermal trimodal imaging-guided photodynamic/photothermal-synergized cancer immunotherapy with the combination of programmed cell death protein-1 (PD-1) antibody. Not only the primary tumors were totally eradicated, but efficient growth inhibition of distant tumors was also realized.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Immunotherapy , Mitochondria , Theranostic Nanomedicine , Oxidants , Multimodal Imaging , Cell Line, Tumor
4.
Biosens Bioelectron ; 216: 114614, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35995026

ABSTRACT

Visualization of immunocyte-microbe interaction is of great importance to reveal the physiological role and working mechanism of innate and adaptive immune system. The lack of rapid and stable microbial labeling platform and insufficient understanding of macrophage-microbe interaction may delay precautions that could be made. In this contribution, a clickable AIEgen, CDPP-NCS, containing a cationic pyridinium moiety for targeting bacteria and an isothiocyanate moiety for covalently bonding with amine groups, is successfully developed. With the advantages of excellent photostability and rapid bioconjugation with amine groups on the bacterial envelope, the processes of macrophage-bacterium interactions with subcellular resolution has been successfully captured using this clickable AIE probe. Therefore, the new clickable AIEgen is a powerful tool to study the interaction between cell and bacterium.


Subject(s)
Biosensing Techniques , Amines , Bacteria , Fluorescent Dyes , Isothiocyanates , Macrophages
5.
ACS Nano ; 16(7): 10742-10753, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35830505

ABSTRACT

The intense metabolism of cancer cells leads to hypoxia and lack of crucial nutrients in the tumor microenvironment, which hinders the function of immune cells. We designed a biomimetic immune metabolic nanoplatform, in which a type I aggregation-induced emission photosensitizer and a glutamine antagonist are encapsulated into a cancer cell membrane for achieving specific delivery in vivo. This approach greatly satisfies the glucose and glutamine required by T cells, significantly improves the tumor hypoxic environment, enables the reprogramming of tumor and immune cell metabolism, induces immunogenic cell death, promotes dendritic cell maturation, and effectively inhibits tumor proliferation. Strong tumor-specific immune responses are further triggered, and the tumor immune-suppressing microenvironment is modulated, by decreasing the number of immunosuppressive cells. Moreover, subsequent combination with anti-PD-1 is able to generate strong abscopal effects to prevent tumor distant metastasis and provide long-term immune memory against tumor recurrence.


Subject(s)
Neoplasms , Photosensitizing Agents , Humans , Photosensitizing Agents/pharmacology , Glutamine/pharmacology , Glutamine/metabolism , Biomimetics , Immunotherapy , Tumor Microenvironment , Immunologic Factors/pharmacology , Nutrients , Cell Line, Tumor
6.
Biomaterials ; 283: 121476, 2022 04.
Article in English | MEDLINE | ID: mdl-35334354

ABSTRACT

In view of the fact that pancreatic cancer, called as the king of cancer, is one of the most lethal malignancies, exploring effective technologies for pancreatic cancer diagnosis and therapy remains an appealing yet significantly challenging task. Phototheranostics has recently received considerable attention by virtue of its various distinctive advantages. However, the limited penetration depth, strong oxygen-dependence and high heat shock protein-inhibition of conventional phototheranostic materials severely hamper their overall theranostic efficacy, especially for deep-seated hypoxia tumors, such as pancreatic tumor. In this study, an aggregation-induced emission (AIE)-featured photosensitizer, namely DCTBT, synchronously sharing NIR-II fluorescence imaging (FLI), diminished oxygen-dependent type-I photodynamic therapy (PDT) and high-efficiency photothermal therapy (PTT) functions was subtly constructed by molecular engineering. With the aid of an EGFR-targeting-peptide-modified amphiphilic polymer, the as-prepared DCTBT-loaded liposomes is capable of effectively accumulating at and visualizing pancreatic tumor, as well as significantly suppressing the tumor growth on both subcutaneous and orthotopic PANC-1 tumor mice models. This study thus brings useful insights into designing the next generation of cancer theranostic agents for potential clinical applications.


Subject(s)
Pancreatic Neoplasms , Photochemotherapy , Animals , Mice , Pancreatic Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Precision Medicine , Theranostic Nanomedicine/methods
7.
Adv Sci (Weinh) ; 9(8): e2105395, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35068078

ABSTRACT

The development of autonomous materials with desired performance and built-in visualizable sensing units is of great academic and industrial significance. Although a wide range of damage indication methods have been reported, the "turn-on" sensing mechanism by damaging events based on microcapsule systems, especially those relying on chemical reactions to elicit a chromogenic response, are still very limited. Herein, a facile and metal-free polymerization route with an interesting reaction-induced coloration effect is demonstrated. Under the catalysis of 1,4-diazabicyclo[2.2.2]octane (DABCO), the polymerizations of difunctional or trifunctional activated alkynes proceed very quickly at 0 °C in air. A series of polymers composed of stereoregular enyne structure (major unit) and divinyl ether structure (minor unit) are obtained. Both the catalyst and monomers are colorless while the polymerized products are deep-colored. This process can be applied for the damage visualization of polymers using the microencapsulation technique. Microcapsules containing the reactive alkyne monomer are prepared and mixed in a DABCO-dispersed polymer film. Both the external and internal damage regions of this composite film can be readily visualized once the reaction is initiated from the ruptured microcapsules. Moreover, the newly formed polymer automatically seals the cracks with an additional protection function.

8.
Biomaterials ; 276: 121007, 2021 09.
Article in English | MEDLINE | ID: mdl-34237505

ABSTRACT

The outbreak of infectious diseases such as COVID-19 causes an urgent need for abundant personal protective equipment (PPE) which leads to a huge shortage of raw materials. Additionally, the inappropriate disposal and sterilization of PPE may result in a high risk of cross-contamination. Therefore, the exploration of antimicrobial materials possessing both microbe interception and self-decontamination effects to develop reusable and easy-to-sterilize PPE is of great importance. Herein, an aggregation-induced emission (AIE)-active luminogen-loaded nanofibrous membrane (TTVB@NM) sharing sunlight-triggered photodynamic/photothermal anti-pathogen functions are prepared using the electrospinning technique. Thanks to its porous nanostructure, TTVB@NM shows excellent interception effects toward ultrafine particles and pathogenic aerosols. Benefiting from the superior photophysical properties of the AIE-active dopants, TTVB@NM exhibits integrated properties of wide absorption in visible light range, efficient ROS generation, and moderate photothermal conversion performance. A series of antimicrobial evaluations reveal that TTVB@NM could effectively inactivate pathogenic aerosols containing bacteria (inhibition rate: >99%), fungi (~88%), and viruses (>99%) within only 10 min sunlight irradiation. This study represents a new strategy to construct reusable and easy-to-sterilize hybrid materials for potential bioprotective applications.


Subject(s)
Anti-Infective Agents , COVID-19 , Nanofibers , Anti-Infective Agents/pharmacology , Humans , SARS-CoV-2 , Sunlight
9.
ACS Nano ; 15(6): 10689-10699, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34077187

ABSTRACT

Phototheranostics involving both fluorescence imaging and photodynamic therapy has been recognized to be potentially powerful for cancer treatment by virtue of various intrinsic advantages. However, the state-of-the-art materials in this area are still far from ideal toward practical applications, ascribed to their respective and collective drawbacks, such as inefficient imaging quality, inferior reactive oxygen species (ROS) production, the lack of subcellular-targeting capability, and dissatisfactory delivery. In this paper, these shortcomings are successfully addressed through the integration of finely engineered photosensitizers with aggregation-induced emission (AIE) features and well tailored nanocarrier systems. The yielded AIE NPs simultaneously exhibit broad absorption in the visible-light region, bright near-infrared fluorescence emission, high ROS generation, as well as tumor lysosomal acidity-activated and nucleus-targeted delivery functions, making them promising for precise and efficient phototheranostics. Both in vitro and in vivo evaluations show that the presented nanotheranostic systems bearing good photostability and appreciable biosecurity perform well in fluorescence imaging-guided photodynamic cancer therapy. This study thus not only extends the application scopes of AIE nanomaterials but also offers useful insights into constructing advanced cancer phototheranostics.


Subject(s)
Neoplasms , Photochemotherapy , Fluorescence , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Precision Medicine
10.
Adv Sci (Weinh) ; 8(14): e2100524, 2021 07.
Article in English | MEDLINE | ID: mdl-34021726

ABSTRACT

Photodynamic therapy (PDT) has long been recognized to be a promising approach for cancer treatment. However, the high oxygen dependency of conventional PDT dramatically impairs its overall therapeutic efficacy, especially in hypoxic solid tumors. Exploration of distinctive PDT strategy involving both high-performance less-oxygen-dependent photosensitizers (PSs) and prominent drug delivery system is an appealing yet significantly challenging task. Herein, a precise nuclear targeting PDT protocol based on type-I PSs with aggregation-induced emission (AIE) characteristics is fabricated for the first time. Of the two synthesized AIE PSs, TTFMN is demonstrated to exhibit superior AIE property and stronger type-I reactive oxygen species (ROS) generation efficiency owing to the introduction of tetraphenylethylene and smaller singlet-triplet energy gap, respectively. With the aid of a lysosomal acid-activated TAT-peptide-modified amphiphilic polymer poly(lactic acid)12k-poly(ethylene glycol)5k-succinic anhydride-modified TAT, the corresponding TTFMN-loaded nanoparticles accompanied with acid-triggered nuclear targeting peculiarity can quickly accumulate in the tumor site, effectively generate type-I ROS in the nuclear region and significantly suppress the tumor growth under white light irradiation with minimized systematic toxicity. This delicate "Good Steel Used in the Blade" tactic significantly maximizes the PDT efficacy and offers a conceptual while practical paradigm for optimized cancer treatment in further translational medicine.


Subject(s)
Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Animals , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Fluorescence , Male , Mice , Mice, Inbred BALB C , Polymers/chemistry , Reactive Oxygen Species/metabolism
11.
Biomaterials ; 274: 120892, 2021 07.
Article in English | MEDLINE | ID: mdl-34020267

ABSTRACT

Construction of single component theranostic agent with one-for-all features to concurrently afford both multi-modality imaging and therapy is an appealing yet significantly challenging task. Herein, a type of luminogens with aggregation-induced emission (AIE) characteristics are tactfully designed and facilely synthesized. These AIE luminogens (AIEgens) exhibit long emission wavelengths, good photostability, remarkable biocompatibility, good reactive oxygen species (ROS) generation performance and excellent photothermal conversion efficiency, which allow them to be powerfully utilized for in vitro and in vivo cancer phototheranostics. The results show that one of the AIEgens is capable of precisely diagnosing solid tumors of mice by means of combined near-infrared-I/II (NIR-I/II) fluorescence-photoacoustic imaging, meanwhile this AIEgen can activate photodynamic and photothermal synergistic therapy (PDT-PTT) upon laser irradiation, resulting in excellent tumor elimination efficacy with only once injection and irradiation. This study thus provides a versatile platform for practical cancer theranostics.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Photochemotherapy , Animals , Mice , Neoplasms/diagnostic imaging , Neoplasms/therapy , Precision Medicine , Theranostic Nanomedicine
12.
Angew Chem Int Ed Engl ; 59(46): 20371-20375, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-32767633

ABSTRACT

Using reverse thinking of the aggregation-induced emission (AIE) principle, we demonstrate an ingenious and universal protocol for amplifying molecular motions to boost photothermal efficiency of fibers. Core-shell nanofibers having the olive oil solution of AIE-active molecules as the core surrounded by PVDF-HFP shell were constructed by coaxial electrospinning. The molecularly dissolved state of AIE-active molecules allows them to freely rotate and/or vibrate in nanofibers upon photoexcitation and thus significantly elevates the proportion of non-radiative energy dissipation, affording impressive heat-generating efficiency. Photothermal evaluation shows that the core-shell nanofibers with excellent durability can reach up to 22.36 % of photothermal conversion efficiency, which is 26-fold as the non-core-shell counterpart. Such a core-shell fiber can be used for photothermal textiles and solar steam generation induced by natural sunlight with green and carbon-zero emission.

13.
Adv Mater ; 32(36): e2003210, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32696561

ABSTRACT

Aiming to achieve versatile phototheranostics with the integrated functionalities of multiple diagnostic imaging and synergistic therapy, the optimum use of dissipated energy through both radiative and nonradiative pathways is definitely appealing, yet a significantly challenging task. To the best of the knowledge, there have been no previous reports on a single molecular species effective at affording all phototheranostic modalities including fluorescence imaging (FLI), photoacoustic imaging (PAI), photothermal imaging (PTI), photodynamic therapy (PDT), and photothermal therapy (PTT). Herein, a simple and highly powerful one-for-all phototheranostics based on aggregation-induced emission (AIE)-active fluorophores is tactfully designed and constructed. Thanks to its strong electron donor-acceptor interaction and finely modulated intramolecular motion, the AIE fluorophore-based nanoparticles simultaneously exhibit bright near-infrared II (NIR-II) fluorescence emission, efficient reactive oxygen species generation, and high photothermal conversion efficiency upon NIR irradiation, indicating the actualization of a balance between radiative and nonradiative energy dissipations. Furthermore, the unprecedented performance on NIR-II FLI-PAI-PTI trimodal-imaging-guided PDT-PTT synergistic therapy is demonstrated by the precise tumor diagnosis and complete tumor elimination outcomes. This study thus brings a new insight into the development of superior versatile phototheranostics for practical cancer theranostics.


Subject(s)
Multimodal Imaging , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging
14.
ACS Appl Mater Interfaces ; 12(23): 26033-26040, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32407616

ABSTRACT

Utilizing solar energy to generate clean water by interface solar steam generation is considered to be a promising strategy to address the challenge of global water shortage. However, it is challenge to design an idealized structure with all of the required characters such as high photothermal conversion efficiency, large surface to volume, and porous and continuous water pumping. Herein, we demonstrate a three-dimensional all-fiber aerogel (3D AFA) that can float on the water surface and continuously self-pump water. More notably, an aggregation-induced emission (AIE) photothermal molecule is doped into the 3D AFA, which is endowed with the superior capacity of transferring solar energy into heat. Combining these distinctive benefits, the presented 3D AFA exhibits a high evaporation rate (1.43 kg m-2 h-1) and solar-to-vapor conversion efficiency (86.5%) under irradiation of 1 sun, as well as a high evaporation rate (10.9 kg m-2 d-1) under natural sunlight. Besides, the designed 3D AFA possesses sustainable stability and a self-cleaning function to restrain salt deposition, and there is no significant change in the evaporation performance after many cycles in the case of seawater treatment. With a highly efficient evaporation rate and long-term sustainable solar steam generation, such 3D AFA can offer a new strategy for desalination.

SELECTION OF CITATIONS
SEARCH DETAIL
...