Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 925: 171260, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417513

ABSTRACT

As a clean, sustainable and efficient technology of wastewater treatment, ultrasonic irradiation has gained special attention in wastewater treatment. It has been widely studied for degrading pollutants and enhancing biological treatment processes for wastewater treatment. This review focuses on the mechanism and updated information of ultrasonic technology to enhance biological treatment of wastewater. The mechanism involved in improving biological treatment by ultrasonic includes: 1) degradation of refractory substances and release carbon from sludges, 2) promotion of mass transfer and change of cell permeability, 3) facilitation of enzyme-catalyzed reactions and 4) influence of cell growth. Based on the above discussion, the effects of ultrasound on the enhancement of wastewater biological treatment processes can be categorized into indirect and direct ways. The indirect effect of ultrasonic waves in enhancing biological treatment is mainly achieved through the use of high-intensity ultrasonic waves. These waves can be used as a pretreatment to improve biodegradability of the wastewater. Moreover, the ultrasonic-treated sludge or its supernatant can serve as a carbon source for the treatment system. Low-intensity ultrasound is often employed to directly enhance the biological treatment of wastewater. The propose of this process is to improve activated sludge, domesticate polyphosphate-accumulating organisms, ammonia-oxidizing bacteria, and anammox bacteria, and achieve speedy start-up of partial nitrification and anammox. It has shown remarkable effects on maintaining stable operation, tolerating adverse conditions (i.e., low temperature, low C/N, etc.), resisting shock load (i.e., organic load, toxic load, etc.), and collapse recovery. These results indicate a promising future for biological wastewater treatment. Furthermore, virous ultrasonic reactor designs were presented, and their potential for engineering application was discussed.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Ultrasonics , Bioreactors/microbiology , Nitrification , Technology , Carbon , Nitrogen/metabolism , Denitrification , Oxidation-Reduction
2.
Bioresour Technol ; 344(Pt A): 126197, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34710608

ABSTRACT

Sludge from wastewater treatment plants can act as a repository and crucial environmental provider of antibiotic resistance genes (ARGs). Over the past few years, people's knowledge regarding the occurrence and removal of ARGs in sludge has broadened remarkably with advancements in molecular biological techniques. Anaerobic and aerobic digestion were found to effectively achieve sludge reduction and ARGs removal. This review summarized advanced detection and removal techniques of ARGs, in the last decade, in the sludge digestion field. The fate of ARGs due to different sludge digestion strategies (i.e., anaerobic and aerobic digestion under mesophilic or thermophilic conditions, and in combination with relevant pretreatment technologies (e.g., thermal hydrolysis pretreatment, microwave pretreatment and alkaline pretreatment) and additives (e.g., ferric chloride and zero-valent iron) were systematically summarized and compared in this review. To date, this is the first review that provides a comprehensive assessment of the state-of-the-art technologies and future recommendations.


Subject(s)
Anti-Bacterial Agents , Sewage , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Digestion , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Humans
3.
Sci Total Environ ; 798: 149344, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34340086

ABSTRACT

Sludge from wastewater treatment plants (WWTPs) is considered to be reservoirs of antibiotic resistance genes (ARGs), which can be efficiently removed by sludge treatment processes, e.g., aerobic sludge digestion. However, recent studies report microplastics, which also accumulate in sludge, may serve as carriers for ARGs. In the presence of microplastics, whether ARGs can still be efficiently destroyed by aerobic sludge digestion remains to be urgently investigated. In this study, the fate of ARGs during aerobic digestion was investigated with and without the addition of three prevalent categories of (i.e., polyvinyl chloride (PVC), polyethylene (PE), and polyethylene terephthalate (PET)). Nine ARGs and class 1 integron-integrase gene (intI1) that represents the horizontal transfer potential of ARGs were tested in this study. Compared with the control, the ARGs removal efficiency decreased by 129.6%, 137.0%, and 227.6% with the presence of PVC, PE, and PET, respectively, although a negligible difference was observed with their solids reduction efficiencies. The abundance of potential bacterial hosts of ARGs and intI1 increased in the reactors with the addition of microplastics, suggesting that microplastics potentially selectively enriched bacterial hosts and promoted the horizontal transfer of ARGs during aerobic sludge digestion. These may have contributed to the deteriorated ARGs removal efficiency. This study demonstrated that microplastics in sludge would decrease the ARGs removal efficiency in aerobic digestion process, potentially leading to more ARGs entering the local environment during sludge disposal or utilization.


Subject(s)
Microplastics , Sewage , Anti-Bacterial Agents/pharmacology , Digestion , Drug Resistance, Microbial/genetics , Genes, Bacterial , Plastics , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...