Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.389
Filter
1.
Platelets ; 35(1): 2347331, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38722091

ABSTRACT

Platelet-rich plasma (PRP) holds promise as a therapeutic modality for wound healing; however, immediate utilization encounters challenges related to volume, concentration, and consistency. Cryopreservation emerges as a viable solution, preserving PRP's bioactive components and extending its shelf life. This study explores the practicality and efficacy of cryopreserved platelet-rich plasma (cPRP) in wound healing, scrutinizing both cellular mechanisms and clinical implications. Fresh PRP and cPRP post freeze-thaw underwent assessment in macrophage, fibroblast, and endothelial cell cultures. The impact of cPRP on active component release and cell behavior pertinent to wound healing was evaluated. Varied concentrations of cPRP (1%, 5%, 10%) were examined for their influence on cell polarization, migration, and proliferation. The results showed minimal changes in cPRP's IL-1ß levels, a slight decrease in PDGF-BB, and superior effects on macrophage M2 polarization and fibroblast migration, while no statistical significance was observed in endothelial cell angiogenesis and proliferation. Remarkably, 5% PRP exhibited the most significant stimulation among all cPRP concentrations, notably impacting cell proliferation, angiogenesis, and migration. The discussion underscores that cPRP maintains platelet phenotype and function over extended periods, with 5% cPRP offering the most favorable outcomes, providing a pragmatic approach for cold storage to extend post-thaw viability and amplify therapeutic effects.


What is the context? Platelet-rich plasma (PRP) is a potential bioactive material for wound healing, but using it immediately faces issues like volume, concentration, and consistency.Low-temperature freezing is a method employed to preserve PRP. However, the current understanding of the effects of the freezing-thawing process on the components of PRP and its impact on cells relevant to wound healing remains unclear.What is new? This study explores the feasibility and effectiveness of using cryopreserved PRP at −80°C for promoting wound healing. This research stands out for its focus on cellular responses and practical implications in therapeutic contexts.To understand their distinct impact on different cell types relevant to wound healing, the study meticulously examined various final concentrations of cPRP (1%, 5%, 10%).The study identified the superior effects of 5% cPRP on crucial cellular activities, notably in cell polarization, proliferation, angiogenesis, and migration.What is the impact? Low-temperature freezing can be considered an effective method for PRP preservation.Some bioactive components in cPRP exhibit subtle changes; however, these changes result in better effects on certain cell types related to healing.The study illustrates that all concentrations of cPRP effectively enhance cell proliferation, migration, and differentiation, emphasizing the comparable efficacy of cryopreserved PRP to non-cryopreserved PRP.


Subject(s)
Cryopreservation , Platelet-Rich Plasma , Wound Healing , Platelet-Rich Plasma/metabolism , Humans , Cryopreservation/methods , Cell Proliferation , Cell Movement , Fibroblasts/metabolism
2.
ACS Sens ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723609

ABSTRACT

Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.

3.
J Nat Med ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724866

ABSTRACT

In this study, 14 abietene and pimarene diterpenoids were isolated from the woods of Agathis dammara. Among them, 4 new compounds, dammarone A-C and dammaric acid A (1-4), were firstly reported, respectively. The structure of the new compounds was determined by HR ESI-MS and 1D/2D NMR spectroscopy, and their absolute configuration was determined by electronic circular dichroism (ECD) exciton chirality method. The hypoglycemic effect of all compounds was evaluated by transgenic zebrafish model, and the structure-activity relationship was discussed. Hinokione (7, HO) has low toxicity and significant hypoglycemic effects on zebrafish, the mechanism is mainly by promoting the differentiation of zebrafish pancreatic endocrine precursor cells (PEP cells) into ß cells, thereby promoting the regeneration of pancreatic ß cells.

4.
Foods ; 13(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731757

ABSTRACT

The traditional fermentation process of soy sauce employs a hyperhaline model and has a long fermentation period. A hyperhaline model can improve fermentation speed, but easily leads to the contamination of miscellaneous bacteria and fermentation failure. In this study, after the conventional koji and moromi fermentation, the fermentation broth was pasteurized and diluted, and then inoculated with three selected microorganisms including Corynebacterium glutamicum, Corynebacterium ammoniagenes, and Lactiplantibacillus plantarum for secondary fermentation. During this ten-day fermentation, the pH, free amino acids, organic acids, nucleotide acids, fatty acids, and volatile compounds were analyzed. The fermentation group inoculated with C. glutamicum accumulated the high content of amino acid nitrogen of 0.92 g/100 mL and glutamic acid of 509.4 mg/100 mL. The C. ammoniagenes group and L. plantarum group were rich in nucleotide and organic acid, respectively. The fermentation group inoculated with three microorganisms exhibited the best sensory attributes, showing the potential to develop a suitable fermentation method. The brewing speed of the proposed process in this study was faster than that of the traditional method, and the umami substances could be significantly accumulated in this low-salt fermented model (7% w/v NaCl). This study provides a reference for the low-salt and rapid fermentation of seasoning.

5.
Heliyon ; 10(9): e30628, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726167

ABSTRACT

Cinnamomum kanehirae Hayata, belonging to Lauraceae family, is an indigenous and endangered species of considerable economic importance in Taiwan. It plays a crucial role as the host for the economically valuable saprotrophic fungus, Taiwanofungus camphorates. However, accurate species identification poses a challenge due to the similarity in morphological features and frequent natural hybridization with closely related species. Acquiring high-quality and pure leaf oils becomes imperative for precise species identification and producing superior goods. In this study, our objective was to establish methodologies for analyzing the chemical composition of leaf essential oils and subsequently apply this knowledge to differentiate among three Cinnamomum species. Gas chromatography-mass spectrometry (GC/MS) was employed to scrutinize the chemical makeup of leaf essential oils from three closely related species: C. kanehirae, C. micranthum, and C. camphora. We utilized Steam Distillation (SD) and steam distillation-solvent extraction (SDSE) methods, with the SDSE-Hexane approach chosen for optimization, enhancing extraction efficiency and ensuring essential oil purity. Through the SDSE-Hexane method, we identified seventy-four compounds distributed across three major classes: monoterpenes hydrocarbons (0.0-7.0 %), oxygenated monoterpenes (3.8-90.9 %), sesquiterpenes hydrocarbons (0.0-28.3 %), and oxygenated sesquiterpenes (1.6-88.1 %). Our findings indicated the presence of more than one chemotype in both C. kanehirae and C. camphora, whereas no specific chemotype could be discerned in C. micranthum. Furthermore, clustering based on chemotypes allowed for the differentiation of samples from the three species. Notably, we demonstrated that the chemical compositions of grafted C. kanehirae remained largely unaffected by the rootstock. Conversely, natural hybrids between C. kanehirae and C. camphora exhibited profiles more closely aligned with C. kanehirae. The optimized extraction method and the chemotype-based classification system established in this study present valuable tools for essential oil preparation, species identification, and further exploration into the genetic variation of Cinnamomum.

6.
Heliyon ; 10(9): e30523, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726205

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly, the exact pathogenesis of which remains incompletely understood, and effective preventive and therapeutic drugs are currently lacking. Cholesterol plays a vital role in cell membrane formation and neurotransmitter synthesis, and its abnormal metabolism is associated with the onset of AD. With the continuous advancement of imaging techniques and molecular biology methods, researchers can more accurately explore the relationship between cholesterol metabolism and AD. Elevated cholesterol levels may lead to vascular dysfunction, thereby affecting neuronal function. Additionally, abnormal cholesterol metabolism may affect the metabolism of ß-amyloid protein, thereby promoting the onset of AD. Brain cholesterol levels are regulated by multiple factors. This review aims to deepen the understanding of the subtle relationship between cholesterol homeostasis and AD, and to introduce the latest advances in cholesterol-regulating AD treatment strategies, thereby inspiring readers to contemplate deeply on this complex relationship. Although there are still many unresolved important issues regarding the risk of brain cholesterol and AD, and some studies may have opposite conclusions, further research is needed to enrich our understanding. However, these findings are expected to deepen our understanding of the pathogenesis of AD and provide important insights for the future development of AD treatment strategies targeting brain cholesterol homeostasis.

7.
Water Res ; 257: 121743, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38728775

ABSTRACT

Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.

8.
Bioorg Chem ; 148: 107426, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38733750

ABSTRACT

Taking advantage of key interactions between sulfoxide and heme cofactor, we used the sulfoxide as the anchor functional group to develop two series of indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors: 2-benzylsulfinylbenzoxazoles (series 1) and 2-phenylsulfinylbenzoxazoles (series 2). In vitro enzymatic screening shows that both series can inhibit the activity of IDO1 in low micromolar (series 1) or nanomolar (series 2) levels. They also show inhibitory selectivity between IDO1 and tryptophan 2, 3-dioxygenase 2. Interestingly, although series 1 is less potent IDO1 inhibitors of these two series, it exhibited stronger inhibitory activity toward kynurenine production in interferon-γ stimulated BxPC-3 cells. Enzyme kinetics and binding studies demonstrated that 2-sulfinylbenzoxazoles are non-competitive inhibitors of tryptophan, and they interact with the ferrous form of heme. These results demonstrated 2-sulfinylbenzoxazoles as type II IDO1 inhibitors. Furthermore, molecular docking studies supports the sulfoxide being of the key functional group that interacts with the heme cofactor. Compound 22 (series 1) can inhibit NO production in a concentration dependent manner in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and can relieve pulmonary edema and lung injury in LPS induced mouse acute lung injury models.

9.
Circulation ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695173

ABSTRACT

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.

10.
Se Pu ; 42(5): 452-457, 2024 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-38736388

ABSTRACT

The applications of organic-amine desulfurization have steadily increased owing to its high efficiency, low cost, and low energy consumption. Different proportions of organic amines exert different effects on sulfur dioxide removal. Therefore, the accurate determination of different organic amines in the desulfurization solution is of great importance. The ion-chromatographic method for the detection of organic amines does not require a derivatization step, has simple pretreatment procedures, and allows for the simultaneous determination of many types of organic amines. In this study, a method based on ion chromatography was developed for the simultaneous determination of ethanolamine (MEA), diethylethanolamine (DEEA), n-methyldiethanolamine (MDEA), 2-amino-2-methyl-1-propanol (AMP), hydroxyethylethylenediamine (AEEA), piperazine (PZ), n-hydroxyethylpiperazine (HEPZ), and diethylenetriamine (DETA). The separation efficiency of the eight organic amines in different types of columns, leaching solutions, and column temperatures were compared. The determination was performed using an IonPac CS17 column with column temperature of 35 ℃ and gradient leaching with methyl sulfonic acid (MSA) solution via the inhibition conductance method. Samples of the desulfurization solution were analyzed using ultrapure water filtered through a 0.22 µm nylon microporous filter membrane and an OnGuard Ⅱ RP column; thus, the pretreatment steps are simple. The eight organic amines showed a good linear relationship within a certain concentration range, and the coefficient of determinations (R2) were greater than 0.998. The limits of detection (LODs) and quantification (LOQs) were determined from the mass concentrations of the organic amines corresponding to signal-to-noise ratios (S/N) of 3 and 10, respectively. LODs of 0.02-0.08 mg/L and LOQs of 0.07-0.27 mg/L were determined from a 1.0 µL sample injection. The actual recoveries ranged from 93.0% to 111%, and the relative standard deviations (RSDs, n=5) ranged from 0.31% to 1.2%. The results indicated that the proposed method has good accuracy and precision; thus, it is suitable for the determination of various organic amines in desulfurization solution.

11.
Front Plant Sci ; 15: 1370593, 2024.
Article in English | MEDLINE | ID: mdl-38742217

ABSTRACT

Establishing cultivated grassland in the Qinghai-Tibet Plateau region is an effective method to address the conflict between vegetation and livestock. However, the high altitude, low temperature, and arid climate in the region result in slow regeneration and susceptibility to degradation of mixed cultivation grassland containing perennial legumes and gramineous plants. Therefore, we aim to through field experiments, explore the feasibility of establishing mixed cultivation grassland of Poaceae species in the region by utilizing two grass species, Poa pratensis L. and Puccinellia tenuiflora. By employing a mixture of P. pratensis and P. tenuiflora to establish cultivated grassland, we observed significant changes in forage yield over time. Specifically, during the 3rd to 6th years of cultivation, the yield in the mixed grassland was higher than in monocultures. It exceeded the yield of monoculture P. tenuiflora by 19.38% to 29.14% and surpassed the monoculture of P. pratensis by 17.18% to 62.98%. Through the analysis of soil physicochemical properties and soil microbial communities in the cultivated grassland, the study suggests that the mixed grassland with Poaceae species can enhance soil enzyme activity and improve soil microbial communities. Consequently, this leads to increased soil nutrient levels, enhanced nitrogen fixation efficiency, and improved organic phosphorus conversion efficiency. Therefore, establishing mixed grasslands with Poaceae species in the Qinghai-Tibet Plateau region is deemed feasible.

12.
Environ Pollut ; : 124178, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763294

ABSTRACT

Cadmium (Cd) pollution has been a significant concern in heavy metal pollution, prompting plants to adopt various strategies to mitigate its damage. While the response of plants to Cd stress and the impact of exogenous melatonin has received considerable attention, there has been limited focus on the responses of closely related species to these factors. Consequently, our investigation aimed to explore the response of three different species of rape to Cd stress and examine the influence of exogenous melatonin in this scenario. The research findings revealed distinctive responses among the investigated rape species. B. campestris showed the resistance to Cd and exhibited lower Cd absorption and sustained its physiological activity under Cd stress. In contrast, B. juncea accumulated much Cd and increased the amount of anthocyanin to mitigate the Cd-damage. Furthermore, B. napus showed the tolerance to Cd and tended to accumulate Cd in vacuoles under Cd stress, thereby decreasing the Cd damage and leading to higher activity of antioxidant enzymes and photosynthesis. Moreover, the application of exogenous melatonin significantly elevated the melatonin level in plants and mitigated Cd toxicity by promoting the activity of antioxidant enzymes, reducing Cd absorption, enhancing the chelating capacity with Cd, decreasing Cd accumulation in organelles, and reducing its fluidity. Specifically, exogenous melatonin increased the FHAc content in B. campestris, elevated the phytochelatins (PCs) level in B. napus, and stimulated photosynthesis in B. juncea. In summary, the findings underscore the species-specific responses of the three species of rape to both Cd stress and exogenous melatonin, highlighting the potential for tailored mitigation strategies based on the unique characteristics of each species.

13.
Vet J ; : 106131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763403

ABSTRACT

The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.

14.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738896

ABSTRACT

Compared to filiform needle therapy, fire-needle therapy has both the stimulation of needles and the warming effect of heat, making it have unexpected effects on some chronic diseases and incurable diseases. Osteoporosis (OP) has a high incidence in postmenopausal women and middle-aged and elderly men, and the treatment cycle is long. According to Traditional Chinese Medicine (TCM), Lingnan fire-needle therapy has shown potential in treating osteoporosis. However, there is still a long way to go before it can be widely used. This article focuses on the application of Lingnan fire-needle therapy in the intervention of OP in rats. It covers the selection of needle tools, acupuncture point selection, positioning of rats' bodies, and fixation methods. We also outline the steps and precautions to be taken during and after needling with fire needles. The experiment was done with three groups: a normal group, a model group, and a fire-needle group, each containing 10 rats. The rats in the fire-needle group were treated with fire-needle intervention for six sessions. After the intervention period, we collected femoral specimens and performed micro-CT scans. The results suggest that fire needling can enhance bone morphology and mineral density in OP rats. This information can serve as a methodological basis for conducting basic research on fire-needle therapy.


Subject(s)
Acupuncture Therapy , Disease Models, Animal , Osteoporosis , Animals , Rats , Osteoporosis/therapy , Female , Acupuncture Therapy/methods , Acupuncture Therapy/instrumentation , Rats, Sprague-Dawley , Needles , Medicine, Chinese Traditional/methods , Male
15.
Int J Ophthalmol ; 17(5): 869-876, 2024.
Article in English | MEDLINE | ID: mdl-38766331

ABSTRACT

AIM: To investigate the difference in risk factors between non-arteritic anterior ischaemic optic neuropathy (NAION) and central retinal artery occlusion (CRAO) and develop a predictive diagnostic nomogram. METHODS: The study included 37 patients with monocular NAION, 20 with monocular CRAO, and 24 with hypertension. Gender, age, and systemic diseases were recorded. Blood routine, lipids, hemorheology, carotid and brachial artery doppler ultrasound, and echocardiography were collected. The optic disc area, cup area, and cup-to-disc ratio (C/D) of the unaffected eye in the NAION and CRAO group and the right eye in the hypertension group were measured. RESULTS: The carotid artery intimal medial thickness (C-IMT) of the affected side of the CRAO group was thicker (P=0.039) and its flow-mediated dilation (FMD) was lower (P=0.049) than the NAION group. Compared with hypertension patients, NAION patients had higher whole blood reduced viscosity low-shear (WBRV-L) and erythrocyte aggregation index (EAI; P=0.045, 0.037), and CRAO patients had higher index of rigidity of erythrocyte (IR) and erythrocyte deformation index (EDI; P=0.004, 0.001). The optic cup and the C/D of the NAION group were smaller than the other two groups (P<0.0001). The diagnostic prediction model showed high diagnostic specificity (83.7%) and sensitivity (85.6%), which was highly related to hypertension, the C-IMT of the affected side, FMD, platelet (PLT), EAI, and C/D. CONCLUSION: CRAO patients show thicker C-IMT and worse endothelial function than NAION. NAION and CRAO may be related to abnormal hemorheology. A small cup and small C/D may be involved in NAION. The diagnostic nomogram can be used to preliminarily identify NAION and CRAO.

16.
Cancer Manag Res ; 16: 347-359, 2024.
Article in English | MEDLINE | ID: mdl-38707745

ABSTRACT

Baihe Gujin decoction is one of the most commonly used decoction in traditional Chinese medicine for the treatment of lung cancer. It can nourish yin and moisten the lung as well as prevent phlegm from forming and stop coughing. On the one hand, Baihe Gujin decoction is characterized with extensive application, proven efficacy, a long history, and high safety. On the other hand, Baihe Gujin decoction can induce apoptosis of tumor cells, improve immune function and inhibit inflammation. The main anti-tumor components of this include kaempferol, quercetin, isorhamnetin, glycyrrhizin and ß-sitosterol. Clinically, Baihe Gujin decoction can improve the adverse reactions caused by radiotherapy, chemotherapy and immunotherapy for lung cancer, enhance the quality of life of patients, and prolong their survival time. At present, there are a large number of clinical and basic researches on the treatment of lung cancer with Baihe Gujin decoction. In this paper, we mainly discussed the treatment of lung cancer with Baihe Gujin decoction through analyzing basic and clinical researches at home and abroad in the past 20 years. Through the discussion, we aimed to probe deeper into Baihe Gujin decoction for the treatment of lung cancer, thereby providing a broader idea for clinical diagnosis and treatment of lung cancer.

17.
Aging (Albany NY) ; 162024 May 16.
Article in English | MEDLINE | ID: mdl-38761181

ABSTRACT

BACKGROUND: Valvular heart disease (VHD) is becoming increasingly important to manage the risk of future complications. Electrocardiographic (ECG) changes may be related to multiple VHDs, and (AI)-enabled ECG has been able to detect some VHDs. We aimed to develop five deep learning models (DLMs) to identify aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation. METHODS: Between 2010 and 2021, 77,047 patients with echocardiography and 12-lead ECG performed within 7 days were identified from an academic medical center to provide DLM development (122,728 ECGs), and internal validation (7,637 ECGs). Additional 11,800 patients from a community hospital were identified to external validation. The ECGs were classified as with or without moderate-to-severe VHDs according to transthoracic echocardiography (TTE) records, and we also collected the other echocardiographic data and follow-up TTE records to identify new-onset valvular heart diseases. RESULTS: AI-ECG adjusted for age and sex achieved areas under the curves (AUCs) of >0.84, >0.80, >0.77, >0.83, and >0.81 for detecting aortic stenosis, aortic regurgitation, pulmonary regurgitation, tricuspid regurgitation, and mitral regurgitation, respectively. Since predictions of each DLM shared similar components of ECG rhythms, the positive findings of each DLM were highly correlated with other valvular heart diseases. Of note, a total of 37.5-51.7% of false-positive predictions had at least one significant echocardiographic finding, which may lead to a significantly higher risk of future moderate-to-severe VHDs in patients with initially minimal-to-mild VHDs. CONCLUSION: AI-ECG may be used as a large-scale screening tool for detecting VHDs and a basis to undergo an echocardiography.

18.
Article in English | MEDLINE | ID: mdl-38752993

ABSTRACT

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Desert Climate , Fatty Acids , Pedobacter , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Pedobacter/genetics , Pedobacter/classification , Pedobacter/isolation & purification , Fatty Acids/chemistry , China , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Nucleic Acid Hybridization
19.
J Hazard Mater ; 472: 134476, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38691996

ABSTRACT

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.

20.
Adv Clin Exp Med ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739103

ABSTRACT

BACKGROUND: Lumbar disc herniation (LDH) is one of the most common diseases and is a global medical and socioeconomic problem characterized by leg or back pain, weakness in the lower extremities and paresthesia. OBJECTIVES: A multicenter, randomized, double-blinded, parallel, positive-controlled clinical trial was conducted to evaluate the efficacy and safety of Yaobitong capsules (YBT) for LDH. MATERIAL AND METHODS: Patients (n = 479) were recruited and randomized into YBT and Jingyaokang capsule (JYK) groups (the positive control), and received YBT or JYK at a dose of 3 capsules 3 times per day after a meal for 30 days. The primary efficacy outcome was the Oswestry Disability Index (ODI), with the visual analogue scale (VAS) used as the secondary efficacy outcome. The adverse events and adverse reactions were also evaluated. RESULTS: There was no significant difference in baseline characteristics between YBT (n = 358) and JYK groups (n = 120), and no difference was observed between groups for mean ODI score at day 0 (p = 0.064) or day 7 (p = 0.196), but there were differences at days 14, 21 and 30 (p < 0.001). The YBT showed more decline from baseline, and the decreased ODI score was substantially different from JYK (p < 0.001). The differences in decreased VAS scores between YBT and JYK were also significant at each time point (days 7, 14, 21, and 30), with better scores in the YBT group than in the JYK group (p < 0.001). In terms of safety, there was no obvious disparity in adverse events or adverse reactions between the 2 groups (p > 0.05). CONCLUSIONS: Yaobitong was better than JYK for LDH treatment, with no significant difference in safety. The study suggests that YBT is a promising and effective treatment for LDH.

SELECTION OF CITATIONS
SEARCH DETAIL
...